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THESIS SUMMARY 
 

"Prosodic Rhythm in the Speech Amplitude Envelope  :  Amplitude Modulation Phase 

Hierarchies (AMPHs) and AMPH Models" 

Victoria Leong (Cheah) Vik Ee 

 

 Speech contains prosodic rhythm patterns. As even newborn infants can perceive 

speech rhythm, such patterns must arise from temporal regularities in the acoustic signal. 

Previous accounts of speech rhythm have typically been duration-based. Here, a novel 

amplitude-based account of prosodic rhythm is presented, based on patterns of amplitude 

modulation (AM) in the speech envelope. In symmetry to nested neuronal oscillations, AMs 

in the speech envelope are conceptualised as forming a nested hierarchy, with tiers capturing 

prosodic units such as stress feet (~ 2 Hz) and syllables (~ 4 Hz). This AM hierarchy captures 

different metrical patterns in children's nursery rhymes (e.g. trochees or iambs) as different 

phase-locked patterns between Stress AMs and Syllable AMs in the hierarchy.  

 In this thesis, two Amplitude Modulation Phase Hierarchy (AMPH) models are 

described. The first AMPH model uses a theoretically-derived 5-tier AM hierarchy. In a tone-

vocoder experiment, the assumptions of the first AMPH model are tested with human 

listeners. The AMPH model is found to correctly predict listener's perception of metrical 

stress patterns on the basis of the Stress-Syllable phase relationship. The second S-AMPH 

model improves on the first model by using a new 5 x 3-tier spectro-temporal AM hierarchy, 

derived 'ground-up' from the modulation statistics of the envelope. Both AMPH and S-

AMPH models are functionally evaluated in terms of syllable detection and prosodic stress 

assignment, using samples of metronome-timed and freely-produced nursery rhyme speech. 

 Finally, the S-AMPH model is used as an analysis tool to characterise rhythmic 

differences between (1) child-directed speech vs adult-directed speech; and to investigate (2) 

speech rhythm perception and production in adults with and without dyslexia. The S-AMPH 

analysis provides unique insights into the spectro-temporal structure of child-directed speech, 

and into the nature of the dyslexic rhythm deficit.  

 In conclusion, the AMPH models provide a novel amplitude-based account of speech 

rhythm perception. They also represent an advancement in methodology for speech rhythm 

research.  
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1 INTRODUCTION & LITERATURE REVIEW 
 

1.1 EARLY LANGUAGE ACQUISITION 

 

 Infants around the world spontaneously acquire spoken language. They acquire 

spoken language because this is the medium that members of their social group and culture 

have chosen for the purposes of constructing shared meaning. Therefore, in order to 

participate as social agents in the world, capable of interacting with and exerting control over 

their environment, infants must acquire spoken language. Spoken language is a system of 

symbols, where words (the units of meaning) are acoustic symbols that stand for real-life 

objects or concepts. However, unlike hieroglyphics where the symbols resemble the objects 

that they stand for, spoken words (with the exception of onomatopoetic words) typically do 

not sound like the objects they represent. For example, we call a cat "cat" rather than 

"meow". Therefore there is no self-evident mapping between the acoustic properties of the 

sound symbol and its meaning, and the infant must learn the meaning of a sound symbol 

from experience.  

 Moreover, human adults speak in sentences that are concatenations of many words, so 

that a target word like "cat" will often be embedded alongside other words in a sentence such 

as "the cat is on the chair". In the acoustic signal, these seven words will not occur as seven 

discrete islands of sound (like Morse code). Rather, what the infant will hear is a continuous 

babble of sound that is richly patterned in the spectral and temporal domains, more similar to 

music than to Morse code. Since words are not clearly delineated by pauses or discontinuities 

(Cole & Jakimik, 1980), the infant must discover these word boundaries for themselves (i.e. 

the speech segmentation problem). Infants must capture the critical sound pattern for each 

word without any irrelevant adjoining material so that their mental representation includes all 

the sound constituents of "cat", but is not over-specified as "the-cat" or "cat-is". Moreover, 

infants must be able to recognise the same sound symbol in the face of acoustic variation 

from different speakers, or different contexts. Therefore, to acquire spoken language, infants 

must carry out a Herculean task of acoustic pattern recognition. Unlike adult listeners, infants 

do this without the aid of an alphabet of graphemes and without recourse to a mental lexicon 

of words to constrain their search. 
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 Typically, infants acquire spoken language with phenomenal success and speed. By 

the end of the first year of life, a typical British infant will already have produced his or her 

first word and be able to comprehend around 50 spoken words (Oxford Communicative 

Development Inventory Database; Hamilton et al, 2000). Across other cultures and 

languages, infants show a similar or even faster rate of word acquisition. For example, Table 

1.1 shows the typical number of words and gestures comprehended and produced by infants 

between 8 to 16 months for six different languages. Over eight months, infants on average 

see a 10-fold increase in the number of words and gestures they understand. The number of 

words they can produce increases even more - a staggering 40-times on average. 

 

Table 1.1. Cross-linguistic norms for infant word production and comprehension. Norms 

were measured using adaptations of the MacArthur Communicative Development Inventories 

(Fenson et al, 2006), and retrieved online from the CLEX database (Nørgaard Jørgensen et 

al, 2010). 

MEAN PRODUCED WORDS & GESTURES 

Age 

(months) 

American 

English 
Danish Swedish Norwegian 

Mexican 

Spanish 
Croatian 

8 2 0.7 0.3 6.9 3 1.1 

10 4.2 1.3 1.9 5.1 5 5.5 

12 10.2 4.8 5.6 8.4 13.1 8.3 

14 26.8 9.5 12.4 17.2 20.5 23.5 

16 60.5 24.2 32.8 32.5 28.9 73.9 

MEAN COMPREHENDED WORDS & GESTURES 

Age 

(months) 

American 

English 
Danish Swedish Norwegian 

Mexican 

Spanish 
Croatian 

8 42.3 16.8 7.2 24 61.6 12.3 

10 55.7 30.6 29.2 39.7 62.3 49.3 

12 84.8 56.5 58.5 79.8 104.2 92.8 

14 153.2 85.9 116.1 113.6 138.9 158.9 

16 193.1 135.3 163.5 158 184.2 212.9 

 



6 

 

 In many situations, infants will receive a rich supply of linguistic input to help them 

achieve this remarkable feat of language learning. However, other infants will have to make 

do with less. For example, Shneidman & Goldwin-Meadow (2012) observed that 12-month-

old American infants typically heard almost 900 utterances per hour, of which 70% were 

directed specifically at them. On the other end of the scale however, Mayan infants of the 

same age only heard around half that number of utterances per hour (~450). Out of these, 

only 20% were directed at them while the remaining 80% of utterances were overheard. 

Moreover, for Mayan infants, a much larger proportion of the spoken input came from other 

child speakers, rather than from adult speakers. Shneidman & Goldwin-Meadow found that 

the amount of directed speech input received by Mayan children was an important predictor 

for their later vocabulary development, while overheard speech was not (supporting the view 

that child-directed speech is adaptive for language learning). Yet despite these vast 

differences in the quantity and quality of the initial linguistic input, both Mayan and 

American children (and indeed most children around the world) will eventually go on to 

master their native language. What strategies do infants and children use to accomplish this 

task? 

 

1.1.1 STRATEGIES FOR LANGUAGE ACQUISITION 

 

 Very soon after birth, infants already appear to show a preference for encoding 

'syllable-like' units of speech. For example, Bertoncini & Mehler (1981) found that infants 

less than 2 months of age could potentially represent syllables as sequences of alternating 

consonant (C) and vowel (V) segments. In their study, they habituated infants to sequences 

that had either a 'legal' (CVC, e.g. "tap") or 'illegal' syllable structure (CCC, e.g. "tsp"), but 

contained the same initial and final consonant. They then tested the habituated infants with 

variants of these sequences in which the first and last consonant were switched (i.e. "tap" 

became "pat" or "tsp" became "pst"). If infants were indeed sensitive to syllable units, and 

represented these syllable units as alternating consonant-vowel sequences, then they should 

dishabituate only when the consonant switch was presented in the context of a 'legal' syllable 

structure (i.e. when "tap" became "pat"). As predicted, more infants dishabituated to the 

"tap"-"pat" switch (12/15 infants) than to the "tsp"-"pst" switch (6/15 infants).  

 In this study, the authors created syllable-legal and illegal stimuli based on their own 

prior knowledge of phonemes and syllable structure. They then assumed that if infants 
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responded differently to the two types of stimuli, it must have been because the infants also 

had implicit knowledge of phonemes and syllable structure. However, it is highly unlikely 

that the infants represented the sequences in the way that the experimenters did (i.e. 

consisting of three phonemes, of which the middle was either a consonant or a vowel). 

Rather, it is more likely that the acoustic properties of the central segments /a/ and /s/ differed 

in a way that allowed infants to bind "tap" as one temporally continuous unit, but not "tsp".  

In other words, the fundamental definition of a syllable (for the infant) was probably not the 

class of its segmental constituents, but the global spectral-temporal 'coherence' of the 

sequence as a whole (which in turn was probably affected by factors like the sonority of its 

constituents). Nonetheless, this study suggests that even 2-month old infants appear to be 

sensitive to the 'syllable-ness' of a sound sequence, and that this factor apparently moderates 

their encoding of an auditory stimulus.  

 Infants also demonstrate a very early sensitivity to prosodic rhythm patterns in 

speech. Human speech heard from inside the womb is effectively low-pass filtered by the 

uterine wall, isolating low frequency information and accordingly foregrounding prosodic 

and rhythmic structure (Armitage et al, 1980). Therefore, while in the womb, fetuses are 

already being to be exposed to the global prosodic patterns of their native language. In the 

last trimester of pregnancy, fetuses may even be able to extract and remember certain 

temporal and prosodic features of speech, such as those pertaining to speaker identity. For 

example, newborn infants can already distinguish their mother's voice from that of another 

female (DeCasper & Fifer, 1980). More remarkably, newborn infants even appear to 

remember a story that was read to them daily for 6 weeks while in utero (DeCasper & 

Spence, 1986), adjusting their sucking rates to hear the familiar story rather than an 

unfamiliar one. This effect remained even when infants were hearing a strange female voice 

read the story rather than their own mother, indicating that they had formed a preference for 

the spoken material itself, not just the speaker.  

 In studies more specific to prosodic rhythm, when newborn infants are presented with 

low-pass filtered sentences from languages of different rhythm classes
1
 (e.g. British English, 

Dutch and Japanese sentences presented to French babies, see Nazzi et al, 1998), they 

discriminate successfully between languages with different rhythm classes (English, 'stress-

timed' and Japanese, 'mora-timed'). However, they do not discriminate between languages 

with the same rhythm class (English and Dutch, both 'stress-timed'). Similar results are found 

                                                 
1
 Language rhythm classes are discussed in Section 1.3.1. 
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when a more radical phoneme replacement method (e.g. 'saltanaj') is used to remove 

phonemic and phonotactic differences between sentences (e.g. Ramus et al, 2000). If 

neonates can still access and use rhythm cues in the speech signal even when its segmental 

content has been replaced, this suggests that the supra-segmental (rhythmic) and segmental 

(phonemic) features of speech are specified by separate sets of acoustic features and temporal 

statistics. In particular, low-pass filtering the speech signal (e.g. under 400 Hz as used by 

Nazzi et al, 1998) apparently retains the rhythmic structure of speech while degrading its 

phonemic structure.  

 

Figure 1.1. Effect of low-pass filtering on the sentence "Mary had a little lamb...". The 

original speech signal is shown on the left and the 400 Hz low-pass-filtered signal is shown 

on the right. The top panels show the acoustic waveform, the bottom panels show the formant 

frequencies (red dotted line), fundamental frequency (blue line) and intensity contour (green 

line). The scale of the y-axis for the bottom panels is 0-7000 Hz for the formant frequencies, 

75-500 Hz for the fundamental frequency, and 50dB-90dB for the intensity contour.  

 

    

 

 As shown in Figure 1.1, the effect of such low-pass filtering is to remove the vast 

majority of formant structure (shown in the figure as red dotted lines), whilst retaining the 

fundamental frequency or pitch contour (blue line) and selected portions of the intensity 

contour (green line). Furthermore, the top panel of the figure illustrates that low-pass filtering 

also distorts the waveform disproportionately so that certain types of speech sounds (e.g. 

high-frequency fricative sounds like /s/) are more likely to be filtered out than others (e.g. 

lower-frequency vowel sounds). Infants are still able to extract rhythm patterns from this 

much-reduced version of the speech signal (Nazzi et al, 1998). This suggests that prosodic 

rhythms are carried primarily by global, relatively slow-varying patterns of spectral and 

amplitude modulation, as exemplified by the preserved pitch contour and intensity contour 

Original speech signal Low-pass filtered (<400 Hz) 

"Mary    had  a  li -ttle lamb  its   fleece was white as   snow" "Mary    had  a  li -ttle lamb  its   fleece was white as   snow" 
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respectively. Furthermore, if infants are already sensitive to such slow-varying speech 

features at birth (e.g. from pre-sensitisation in the womb), they may be able to harness the 

syllabic- and prosodic-level information specified in these slow-varying acoustic features to 

'boot-up' language learning. 

 This suggestion is not new. Prosodic information has long been proposed to play an 

important role in 'bootstrapping' early language acquisition (Gleitman and Wanner, 1982). To 

solve the problem of speech segmentation, it has been suggested that infants tune in to the 

common prosodic stress patterns of their native language, and use these patterns to parse the 

speech signal into candidate words via a 'metrical segmentation strategy' (Cutler & Norris, 

1988).  For example, in the English language, it is estimated that 90% of content words begin 

with a strong initial stressed syllable, such as "DA-ddy" or "BA-by" (Cutler & Carter, 1987). 

By around 9 months of age, English-learning infants show sensitivity to this prosodic 

statistic, preferring words with a 'Strong-weak' (S-w) syllable pattern over those with a 

'weak-Strong' (w-S) syllable pattern (Jusczyk et al, 1993; Echols et al, 1997). For example, 

when presented with the sentence "her gui-TAR is too fancy", 7.5-month-old infants 

preferentially segment "TAR-is" (S-w) as a word instead of "gui-TAR" (w-S), following the 

'S-w' heuristic (Jusczyk et al, 1999). By 10.5 months, infants no longer make this error, 

possibly due to sensitivity to other cues such as allophonic differences or learning the 

transitional probabilities between segments and syllables (i.e. 'statistical learning', Saffran et 

al, 1996). However, it is not the case that these older infants are no longer sensitive to 

prosodic stress patterns, or no longer use stress in speech segmentation. In fact, in the 

presence of conflicting 'statistical' and 'prosodic' cues, 11-month-old infants still 

preferentially use prosodic cues over statistical cues as word boundaries (Johnson & Seidl, 

2008). Hence, rather than losing their sensitivity to stress, older infants instead appear to be 

simply integrating a broader array of segmentation cues. Consistent with this interpretation, 

computational models of speech segmentation perform better when both statistical cues and 

prosodic cues are combined (Christiansen et al, 1998). 
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1.1.2 CROSS-LINGUISTIC DIFFERENCES IN EARLY LANGUAGE ACQUISITION 

 

 Furthermore, the prosodic rhythm class of a language may also determine the 

linguistic level or 'grain-size' at which infants initially begin to segment speech. A specific 

formulation of this view is the 'rhythm activation hypothesis' put forward by Nazzi et al 

(2006). This hypothesis proposes that the dominant rhythmic unit of a language should also 

form the main initial unit of prosodic segmentation. Accordingly, infants learning a 'stress-

timed' language such as English, Dutch or German should develop a strategy to segment 

trochaic (S-w) stress units, while infants learning 'syllable-timed' languages like French, 

Spanish or Italian should initially segment syllable units instead.  

 The findings by Jusczyk et al (1999) are consistent with the view that English-

learning infants initially develop a trochaic stress-based segmentation strategy. Similarly, 

infants learning Dutch (a stress-timed language) also begin segmenting Strong-weak words 

between 7.5 and 9 months of age (Houston et al, 2000; Kuijpers et al, 1998). Infants learning 

stress-timed German appear to acquire the trochaic bias at an even earlier age, listening 

longer to a trochaic pattern (e.g. "GA-ba") than an iambic pattern ("ga-BA") for the same 

word from as early as 6 months of age (Hohle et al, 2009). Unlike infants learning stress-

timed English, Dutch or German, 6-month-old infants learning syllable-timed French do not 

show a preference for either trochaic or iambic stress patterns, although they can discriminate 

between them (Hohle et al, 2009). Furthermore, French infants do not begin segmenting 

whole bi-syllable words from continuous speech until 16 months of age, although they do 

segment the initial and final syllables of such bi-syllable words from 12 months of age (Nazzi 

et al, 2006).  

 These language differences are also apparent at the neural level. For example, 

Friederici et al (2007) found that even 4-month-old German and French infants showed 

different event-related potential (ERP) responses to trochaic and iambic sound patterns. In an 

oddball paradigm, the infants were presented with a string of repetitions of the word "baba". 

There were two version of the stimulus string. In the first version, the standards were stressed 

in a trochaic manner and occasional deviants were iambically-stressed (e.g. BAba BAba 

BAba baBA BAba...). In the second version, the standards were iambically-stressed and 

occasional deviants were trochaically-stressed (e.g. baBA baBA baBA BAba baBA...). 

German infants showed an ERP 'mismatch' response when the deviant stimulus was an 

iambic bisyllable amidst a train of trochees (i.e. version 1). However, the infants did not 
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show a mismatch response when the deviant stimulus was a trochee amidst a train of iambs 

(i.e. version 2). Therefore, even at 4 months, German infants already showed a neural 

processing bias toward trochaic stress patterns. Conversely, French infants showed a 

mismatch response when the deviant was a trochee (i.e. version 2), but not when it was an 

iamb (i.e. version 1). This result for the French infants was different to that predicted by the 

'rhythm activation hypothesis'. According to this hypothesis, French infants should show an 

equal mismatch response to both trochaic and iambic deviants since they are preferentially 

segmenting speech at the syllable level. However, although French is a syllable-timed 

language, phrase-final syllables commonly carry prosodic stress (di Cristo, 1998), which 

could explain infants' preference for the iambic stress-final (w-S) pattern.  

 Friederici et al's (2007) result is convergent with a study by Mampe et al (2009), in 

which they demonstrated that cross-linguistic prosodic differences between German and 

French were even evident in the temporal pattern of newborn infants' cries. In their study, 

Mampe et al (2009) compared the temporal shape of spontaneous cries produced by 30 

French and 30 German newborn infants. After normalising for cry duration, they found that 

French infants produced cries that took relatively longer to reach peak intensity (i.e. longer 

rise times) and longer to reach maximum pitch, while German infants produced cries that 

reached peak intensity and maximum pitch significantly earlier, and then slowly tapered off. 

If the cry is taken to represent a prosodic stress foot, then German babies were placing 

prosodic stress (i.e. high pitch and intensity) at an earlier portion of the foot than French 

babies. Therefore, newborn German infants' cries were more 'trochaic' and French infants' 

cries were more 'iambic' in temporal pattern, consistent with the neural mismatch responses 

measured in 4-month-old infants by Friederici et al (2007). That is, if German infants were 

producing more 'trochaic' cries themselves, then they would be more likely to recognise a 

train of trochees as being standard (like their own cries), and an iambic pattern as being 

deviant. Conversely, French infants would be more likely to recognise an iambic train as 

being standard, and a trochaic pattern as being deviant. Moreover, Mampe et al's study with 

newborns indicates that exposure to low-pass-filtered speech in-utero may be sufficient to 

impart an implicit knowledge of native prosodic patterns to infants. 

 However, while French infants appear to preferentially discriminate the iambic 

pattern by 4 months of age, and may even produce a similar pattern themselves when crying, 

they do not appear to use this iambic motif as a metrical segmentation strategy (unlike 

English-learning infants who do use the trochee). This may be because final syllable-
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lengthening in French is not so much a cue for word boundaries, as it is for phrase 

boundaries. Therefore, contrary to the 'rhythm activation hypothesis', French-learning infants 

may instead initially segment speech into larger phrasal units, rather than smaller syllable 

units. In this case, the basic unit of prosodic segmentation would not correspond to the 

perceived rhythm class, but to the linguistic level at which prosodic stress provides the most 

reliable and pronounced boundary cues. This is not to say that French (or indeed English) 

infants are not sensitive to syllable units in speech. On the contrary, the 2-month old French 

infants in Bertoncini & Mehler's (1981) study showed an exquisite sensitivity to syllable 

structure. Rather, perhaps all infants are born equipped as 'syllable-detectors'. What the 

prosodic patterns of their native language specify are the ways in which these discrete 

syllables should be bound or grouped into higher-level units of meaning, such as words or 

phrases. By this view, infants develop a metrical binding strategy that is dependent on the 

rhythmic characteristics of their native language. Accordingly, while English infants initially 

attempt to bind syllables into binary trochaic proto-words, French infants initially attempt to 

bind syllables into stress-final proto-phrases containing a variable number of syllables (and 

only later deconstruct these into constituent words, using other distributional cues). 

Consequently, while English infants become committed to a binary word representation early 

on, French infants may maintain a more flexible word length representation until later. This 

explanation could account for the disparate behavioural and neural results observed in 

French-learning infants. 

 Whether early or late in the first year of life, across languages, infants eventually 

begin to use the characteristic statistical distributions and rhythmic patterns of their native 

language to actively constrain speech processing (e.g. in finding candidate words within the 

speech stream). In English- and Dutch-learning infants, this occurs around 7.5 to 9 months, 

while in German-learning infants, this could occur earlier at around 6 months of age. French-

learning infants (as discussed previously), may maintain a more flexible representation until 

as late as 16 months. Therefore within the first year of life, speech perception becomes an 

active, constructive process, with infants generating 'hypotheses' about what constitutes a 

meaningful sound pattern or 'word' (eg. word = trochee-patterned syllable sequence). 

Neurally, during this same period (the first year of life), thalamo-cortical afferent connections 

are rapidly being formed in the infant auditory cortex (Moore, 2002), allowing the neocortex 

to become increasingly engaged in interpreting the incoming auditory input. These new 

connections in the auditory cortex could possibly underlie infants' 'tuning' to the prosodic 
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patterns of their native language during the later half of their first year. For a review of the 

stages of maturation in auditory cortical development, please see Appendix 1.1.  

 In summary, acquiring knowledge about native prosodic rhythm patterns is an 

important first step in language development. Without knowledge of these prosodic patterns, 

infants could not gain a foothold on language so quickly. The acoustic basis of these prosodic 

patterns are the focus of this thesis. In later chapters, two novel models will be proposed to 

demonstrate how key prosodic information (e.g. syllable location and prosodic stress 

patterns) may be derived solely from low-level acoustic information (e.g. amplitude 

modulation patterns in the speech envelope), without recourse to higher-order lexical 

knowledge. Therefore these models operate with the same constraints that newborn infants 

face. If rhythm can be inferred solely from the speech signal, then speech rhythm may be a 

truly emergent, or self-evident, property of the speech signal. Put another way, speech 

rhythm may be our perceptual experience of what is the fundamental temporal structure of 

speech. By this view, all later cognitive activity upon the speech input (including 

interpretations of meaning) must necessarily be initially constrained by this fundamental 

temporal structure. If speech rhythm is indeed emergent, and an important constraint upon 

speech processing, it is no wonder that infants show such acute sensitivity to prosodic 

information early in language learning. 

 

1.2 LINGUISTIC RHYTHM 

 

 Rhythm commonly refers to an alternating pattern of 'Strong' and 'weak' elements 

(Schane, 1979; Lerdahl & Jackendoff, 1983). In the linguistic context, this rhythmic 

alternation is most clearly illustrated at the level of syllables, which can be stressed (Strong, 

'S') or unstressed (weak, 'w'). Moreover, this Strong-weak alternation also occurs at higher 

levels of rhythmic organisation. For example, the word "MI-ssi-SSI-ppi" contains four 

syllables that alternate in prosodic stress to give a 'S-w-S-w' pattern of syllable stress. 

However, the four syllables may also be grouped at a higher level of organisation into two 

pairs of prosodic 'stress feet'
2
, where each stress foot has a 'S-w' motif. At this higher level of 

                                                 
2
 The prosodic 'foot' (a term originally borrowed from poetic meter, Selkirk, 1980) is a basic metrical unit of 

rhythm that refers to a group of syllables with one stressed syllable. For example, binary feet consist of two 

syllables, and may have either a strong-weak (trochaic) or weak-strong (iambic) stress pattern. In poetry, foot 

patterns are used to describe poetic meters such as the iambic pentameter, defined as a basic line of five iambic 

feet (Hanson, 2006). 
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organisation (the stress foot), rhythmic Strong-weak alternation is also present, since the 

second stress foot (corresponding to "ssi-ppi") is stronger in prominence than the first stress 

foot (corresponding to "mi-ssi").  In metrical phonology, this hierarchical prosodic pattern 

can be represented either as a grid or as a tree that captures the relative prominence of each 

element (Selkirk, 1980, 1984, 1986; Liberman & Prince, 1977; Hayes, 1995). Both 

representations are depicted in Figure 1.2. 

 

Figure 1.2. Grid and tree representations of hierarchical prosodic structure  

 (a)  Grid Representation (x = prominence)      

 (Level 3) (  x   ) 

 (Level 2) (x  x   ) 

 (Level 1) (x x)        (x x) 

   MI /   ssi /     SSI/       ppi 

 

 (b) Tree Representation (w = weaker than; S = stronger than) 

 (word)       

 (foot)           w            S     

 (syllable)  S w      S        w 

           MI /     ssi /     SSI/       ppi 

 

 In both representations, the hierarchical tiers of the grid or tree represent prosodic 

levels such as syllables, stress groupings, primary lexical stress (for each word), and phrasal 

stress accents. In the grid representation, prosodic prominence at each level is marked with an 

'x'. Therefore, at Level 1 (syllable), the four syllables are each marked with an 'x'. At Level 2 

(stressed syllable), the locations of the two stressed syllables ("mi" and "ssi") are each 

marked with an 'x'. At Level 3 (primary lexical stress), only the primary stressed syllable for 

the word (third syllable "ssi") is marked with an 'x'. In the tree representation, the focus is on 

the relative prominence between adjacent elements (nodes). At each level, stronger (S) and 

weaker (w) nodes are identified. Moreover, nodes at each hierarchical level also represent 

prosodic units that encompasses one or more 'daughter' nodes at lower levels. Related 'parent' 

and 'daughter' nodes are indicated as 'branches' in the tree. So in the tree example of Figure 
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1.2, the whole word (highest level of the hierarchy) is seen as comprising two prosodic feet 

(second level), one weak and one strong. Each of these feet is in turn made up of two 

syllables (lowest level), and both prosodic feet have the same metrical pattern (S-w).  

 Note that both tree and grid representations enable an analogy with metrical structure 

in music. In music, the term 'meter' refers to the number of beats per bar. This may be duple 

(e.g. 2/4, two quarter-notes per bar), triple (e.g. 3/4, three quarter-notes per bar) or a 

compound (e.g. 6/8, two sets of three eighth-notes each). If musical beats are analogous to 

syllables, and 'bars' are analogous to prosodic feet, then the meter will equate to the number 

of syllables per prosodic foot. Hence, the hierarchical rhythmic structure of speech has strong 

analogies to the hierarchical rhythmic structure of music. Of course, this idea is not novel. 

Lerdahl and Jackendoff (1983) originally proposed that the metrical structure of a musical 

piece may also be represented using a hierarchical grid structure capturing the alternation of 

strong and weak beats. They argued that prosodic stress patterns in speech and beat patterns 

in music may share core principles of rhythmic organisation, especially those of alternation 

and hierarchy. As will be shown, the two hierarchical AM models proposed in this thesis 

explicitly support these intuitions about rhythm. Specifically, the linguistic rhythmic 

hierarchy may have its basis in hierarchical amplitude modulation patterns in the speech 

envelope. Accordingly, Strong-weak rhythmic alternation may arise from cyclical oscillation 

patterns in these amplitude modulations. These ideas are developed further in Chapter 2, 

Section 2.1. Here, however, prior approaches to describing linguistic rhythm will be 

reviewed.  
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1.3 PRIOR APPROACHES TO DESCRIBING SPEECH RHYTHM 

 

1.3.1 LANGUAGE RHYTHM CLASSES & RHYTHM-METRICS 

 

 Linguists have long suggested that languages can be classed as having different 

rhythmic typologies (e.g. Abercrombie, 1967; Pike, 1945). For example, it was suggested that 

languages like English and Dutch could be grouped together as they shared a 'Morse-code'-

like rhythm of long and short pulses, associated with alternating stressed and unstressed 

syllables (stress timing). Other languages, like Spanish and Italian, could be characterised by 

a 'machine-gun'-like rhythm arising from evenly-spaced syllables (syllable timing). To 

explain these typologies, Abercrombie (1967) proposed that durational isochrony (regular 

timing) at different linguistic levels underscored the rhythmic differences between languages. 

By this account, languages were 'stress-timed' if the intervals between successive stressed 

syllables were constant, but 'syllable-timed' if the intervals between the syllables themselves 

were constant.  

 Empirical support for distinct language rhythm classes came from infant studies, 

which showed that even neonates appeared to classify languages by rhythm type. For 

example, as discussed earlier in Section 1.1.1, Nazzi et al, 1998 found that French neonates 

could distinguish between languages from different rhythm classes (such as English vs 

Japanese), but not between languages from the same rhythm class (such as English vs Dutch). 

Moreover, infants could still perform the rhythm classification even when the phonetic 

differences between languages were removed by re-synthesis (Ramus et al, 2000) or low-pass 

filtering (Nazzi et al, 1998), preserving only speech prosody. These striking results indicated 

that the 'prototypical' temporal statistics used by infants for rhythm classification arose 

directly from the speech signal and were computed without recourse to lexical knowledge. 

However, while there is support for the concept of rhythm classes from infant studies, other 

research has not supported Abercrombie's proposed mechanism of durational isochrony (eg. 

Dauer, 1983; Roach, 1982). For example, Dauer (1983) found that stress intervals in English 

grew in length with increasing numbers of syllables, rather than maintaining isochrony.  

 An alternative segmental durational account of rhythm classes proposes that rhythm 

differences arise from phonological differences between languages. Dauer (1983) proposed 

that the durational variability of syllables in stress-timed vs syllable-timed languages could 

be caused by differences in syllable structure, vowel reduction and stress influence on vowel 
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duration. Several different 'rhythm-metrics' were subsequently proposed to capture these 

segmental differences. These metrics were based on the statistical properties of segmental 

duration variation, rather than on isochrony per se. Measures like %V, ∆V, ∆C (Ramus et al, 

1999) quantified the relative proportions of vocalic intervals and the standard deviation of 

vocalic and consonantal durations in speech. Pairwise variability indices (PVIs, Grabe & 

Low, 2002) and rate-normalized measures like VarcoV and VarcoC (Dellwo & Wagner, 

2003) focused on the relative variability in the length of successive consonantal and vocalic 

intervals. These various measures were successful in classifying prototypical languages like 

English, Spanish and Japanese, indicating that segmental durational statistics were indeed 

associated with perceived rhythm class. However, only limited success was achieved in 

describing non-prototypical languages such as Greek, Malay, or Welsh (Grabe and Low, 

2002).  

 Therefore, while successful under some conditions, segmental durational statistics 

have also failed to provide a universal account of speech rhythm, suggesting that a new 

broader conceptualisation of speech rhythm may be required. More recently, Arvaniti (2009) 

has proposed an emphasis on the role of perception, arguing that perceptual timing factors, 

rather than acoustic durations, may account for rhythm in speech. Patel (2008) further argues 

that the apparent rhythmic qualities of speech may not be due to periodic factors at all, but 

may be better attributed to 'non-periodic' factors such as higher-order temporal, accentual and 

phrasal patterns (e.g. grouping structure and accentual clash avoidance). In contrast to music, 

which has a strong periodic framework by intentional design, Patel suggests that rhythm in 

language is a by-product of its phonology (syllable structure, vowel reduction, etc). While the 

arguments raised by Arvaniti and Patel (perceptual timing effects, higher-order grouping 

cues) are certainly relevant, it may also be the case that previous segmental durational 

statistics simply have not captured all the rhythm information that is present in the speech 

signal. For example, if only durational effects are considered, then any rhythm cues from 

intensity or pitch changes will be ignored. If only short phonetic segments are measured, then 

rhythm patterns that arise at longer and slower timescales (e.g. syllables, words, phrases) will 

not be well represented. Therefore, a more complete account of speech rhythm should 

include these factors that have previously been ignored by segmental durational statistics. 
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1.3.2 PERCEPTUAL-CENTRES 

 

 Central to the rhythmic timing field is the perceptual-centre or 'p-centre' literature, 

which was intended to model the perceptual ‘moment of occurrence’ of events in any sensory 

modality (Morton et al, 1976; Marcus, 1981). For example, if we wish to dance in time with 

music, then theoretically we need to time the p-centres of our movements with the p-centres 

of musical notes. In music, the p-centre of a note will depend on the instrument producing it: 

a bowed instrument (e.g. violin) will produce a note with a later p-centre due to the slower 

attack time than an instrument like a trumpet (Gordon, 1987).  

 P-centres in speech are commonly associated with the onsets of syllable vowel nuclei, 

and are thought to be cued primarily by changes in loudness or signal amplitude (Allen, 

1972; Scott, 1993; 1998; Villing, 2010). Accordingly, attempts to identify and model the 

acoustic correlates of p-centres in speech have focused on the speech amplitude envelope (the 

speech envelope is described further in Section 1.6). For example, Howell (1984, 1988a, 

1988b) proposed a syllabic 'center of gravity model', in which the distribution of energy 

within the amplitude envelope was the key determinant of p-center location. Other models by 

Pompino-Marschall (1989) and Harsin (1997) make use of loudness functions or the rate-of-

change of modulation in the envelopes of different spectral bands. To date, there is no 

consensus on the exact acoustic correlate of 'p-centres' in speech (see for example, Patel et al, 

1999). However, even though the precise perceptual-acoustic relationship between p-centres 

and the speech envelope is not known, it is generally accepted that patterns of amplitude 

modulation in the speech envelope contribute toward the perception of syllable p-centres. 

 

1.3.3 RHYTHMIC CONSTRAINTS IN SPEECH PRODUCTION 

 

 Rhythm-metric approaches investigate the acoustic cues to rhythm, while the p-centre 

approach describes its psychological correlates. A third avenue of enquiry pertains to the 

production of rhythmically-timed speech. For example, Cummins and Port (1998) argued on 

the basis of speech production data that speech rhythm depends on the hierarchical 

organization of temporally-coordinated prosodic units of production. In a 'speech cycling' 

experiment, they accordingly investigated the rhythmic constraints on speech production. 

Participants were required to repeat a short phrase (e.g. “beg for a dime”) in time with a 

series of alternating high and low tones. The syllables "BEG" and "DIME" were stressed, 
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creating two metrical feet ("BEG-for-a" and "DIME") within the whole phrase. The high tone 

was the synchronising signal for phrase onset (when to produce “BEG”), and the low tone 

cued production of the final stressed syllable (“DIME”).  

 The time between high and low tones was kept constant at 700 ms, however, the time 

between low and high tones was varied in different conditions between 300 ms and 1633 ms. 

This manipulation was meant to vary the 'onset phase' (relative position) of the low tone 

within the overall high-high cycle. For example, if the time between low and high tones was 

300 ms, this created a total high-high cycle duration of 700 ms + 300 ms = 1000 ms. In this 

case, the authors defined the 'onset phase' of the low tone within the high-high cycle as 700 

ms / 1000 ms = 0.7. When the time between low and high tones was 1633 ms, this created a 

total cycle duration of 700 ms + 1633 ms = 2333 ms, within which the low tone had an onset 

phase of 700 ms / 2333 ms = 0.3.   

 Participants were presented with stimuli where the onset phase of the low tone was 

evenly distributed over all possible phase values between 0.3-0.7. However, an envelope-

based analysis of the actual speech patterns produced by participants showed that they tended 

to 'over-regularise' the production of the target stressed syllable ("DIME"). Rather than 

faithfully following the cue of the low tone over all onset phase values, participants' actual 

productions of the target word were heavily biased toward certain specific phase positions 

within the overarching phrase repetition cycle - 0.33, 0.5 and 0.67. In essence, if the overall 

phrase is regarded as the temporal unit or cycle that repeats, then the production of key 

prosodic sub-units was constrained to occur only at certain time points in the cycle, 

corresponding to a sub-division of the cycle into two or three parts (i.e. a duple or triple 

meter). This result showed that participants’ perceptuo-motor behaviour was sensitive to the 

hierarchical organisation of the pacing beats, with relative phase being the key organising or 

constraining factor (i.e. the relative time point at which "DIME" was positioned within the 

overarching phrase).  

 Port (2003) subsequently proposed the existence of neural oscillations that produce 

pulses on every rhythmic cycle, where the pulses act as attractors for the timing of syllable 

beats (i.e. for aligning the 'p-centres' of the syllables). Port also extended the Cummins and 

Port (1998) model to propose that rhythmic meter arises from the integer-ratio phase-locking 

of several oscillators in time. This has the effect of creating a complex, hierarchically-nested 

structure whose purpose is to generate these pulse attractors.  



20 

 

 In a typical motor entrainment task, rhythm and meter are externally imposed by way 

of a pacing metronome, necessary to give experimenters an objective 'reference phase' for 

computational purposes (Repp, 2005; McAuley et al., 2006; Corriveau & Goswami, 2009). 

Cummins and Port elegantly demonstrated that human rhythm timing and production 

mechanisms are dependent on the phase of such an external pacing metronome. However, 

since we are also able to synchronise our speech to that of other speakers without an external 

pacing metronome (Cummins, 2003), the speech signal itself may also contain hierarchical 

phase cues for synchronisation. In this thesis, the possibility that these hierarchical phase 

cues to rhythm reside in the amplitude envelope of speech will be explored.   

 

1.3.4 COMPUTATIONAL MODELS OF SPEECH RHYTHM 

 

 Finally, two computational models of speech rhythm will be reviewed, as exemplars 

of two general classes of computational models. The first model (the auditory primal sketch) 

attempts to replicate a physiological response to rhythmic input. As such, it is a model of the 

auditory representation of rhythm. The second class of models is purely theoretical and not 

based on biological mechanisms. Rather, the aim of these models is to closely approximate 

the observed experimental data, and to explain differences between sets of experimental data 

in mechanistic terms. The two Amplitude Modulation Phase Hierarchy (AMPH) models 

proposed in this thesis are closer to models in the first category. Like the auditory primal 

sketch theory, the AMPH models also deal with the actual acoustic data (rather than 

durational statistics), transforming this raw acoustic information into indices for rhythm using 

'neural-plausible' mechanisms. However, while the auditory primal sketch theory focuses 

primarily on early processing (i.e. in the auditory periphery), the AMPH models are based on 

central cortical mechanisms. It is assumed that the role of the auditory cortex is to interpret, 

rather than merely to faithfully represent, the auditory input. As such, the mechanisms 

proposed in the AMPH models describe how the raw auditory input is transformed into 

prosodic patterns that are perceived by the human listener. 

 

1.3.4.1 Auditory Primal Sketch Theory 

 Todd and colleagues (Todd, 1994; Todd & Brown, 1996; Todd et al, 1999; Todd et al, 

2002; Lee & Todd, 2004) proposed an auditory model of speech rhythm in which rhythmic 

organisation was determined by the relative auditory prominence of phonetic events. Their 
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model was based on the idea of an 'auditory primal sketch', derived by smoothing a 

simulation of the auditory nerve response using a bank of low-pass filters with different time 

constants. Peaks were then identified in the smoothed signal for each output filter channel, 

and plotted as a graph, or 'rhythmogram'. For example, Figure 1.3a below shows the 

rhythmograms for the words "IMport" and "imPORT", which differ in syllable stress pattern. 

In the rhythmogram, each vertical line corresponds to a different phoneme segment or cluster 

of phonemes, and the height of the vertical line is determined by responses from auditory 

filters with increasing time constants. Therefore, a segment with very high prominence will 

elicit a response from even very slow auditory filters, giving a longer vertical line, whereas a 

segment with low prominence will only elicit responses from the faster filters, giving a 

shorter vertical line. The authors then compute a 'P' (prominence) value for each segment by 

integrating the peak output values of the filter channels over time. This prominence value is 

influenced by the intensity, duration and frequency of the event. 

 

Figure 1.3. Reproduced from Lee & Todd (2004).  

(a) Rhythmogram (top) and computed prominence values (bottom) for the words "IMport" vs 

"imPORT". 
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(b) Rhythmogram (top) and computed prominence values (bottom) for the word 

"reconciliation"  

Although the two rhythmograms 

appear similar, the two utterances 

actually differ in the relative 

prominence (P value) of the first and 

third vowel segments, shown in the 

corresponding prominence plots 

below. For "IMport", the first 

segment is slightly more prominent 

than the third segment, while for 

"imPORT", the first segment is much 

less prominent than the third segment. 

Therefore, the model appears to 

effectively capture phonetic 

segments, and is able to compute a 

prominence value for each of these 

segments.  

 However, there is no explicit 

representation of syllables or words in 

the model. For example, Figure 1.3b 

shows the rhythmogram and prominence values for the word "reconciliation". Phonetic 

segments are again well-represented here (although there is not a one-to-one mapping 

between phonemes and rhythmogram segments), and the 'stressed' portions of the word are 

correctly assigned greater prominence values. However, it is hard to infer the syllable pattern 

from either the rhythmogram, or from the assigned P values. For example, if vowels were 

assumed to be more prominent than consonants (as was the case for the word "import"), then 

one would expect to see five or six vocalic segments with greater prominence than their 

surrounding consonantal segments. Instead, the prominence graph shows just two major 

vocalic peaks and two additional smaller peaks corresponding to the fricative consonants. 

Therefore, the prominence information computed in the rhythmogram would appear to be 

insufficient for the auditory system to infer the presence of six syllables in the word.  
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 In fact, a similar problem with specifying syllabicity is present in the previous 

example with "IMport" and "imPORT". If it is assumed that each peak in prominence (above 

a certain threshold) indicates a new syllable, then "IMport" could be correctly inferred to 

have two syllables. However, the prominence values of the first two segments in "imPORT" 

are very close together, and very low. This would have to be interpreted as evidence for 

either three syllable in the word, or just one. The issue of syllabicity is important because 

perceived rhythm patterns in speech depend on the alternation of strong and weak syllables, 

not strong and weak segments. Therefore, if a model does not accurately specify syllables, it 

is hard to see how it would accurately specify the rhythmic patterns that depend on these 

syllables.   

 In summary, the auditory primal sketch model is an impressive and physiologically 

credible model of segmental prominence. However, simply knowing the location of 

prominent segments is insufficient to infer prosodic patterning if one does not also know how 

many syllables lie between these prominences. This limitation is acknowledged by the 

authors (Lee & Todd, 2004), who claim that "it would be a simple matter, and one requiring 

no controversial psychological assumptions, to incorporate into the model a routine for 

detecting the presence or absence of periodic acoustic energy and thereby enable it to 

identify likely syllable nuclei".  Until this syllable feature is incorporated, the auditory primal 

sketch model remains primarily a segmental model. It is therefore likely to share the 

successes and short-comings of other segmental rhythm-metric measures.  

 

 1.3.4.2 Coupled Oscillator Models 

 The Coupled-Oscillator model (COM) of O'Dell and Nieminen (1999) uses the 

relative timing or phase relationships between multiple oscillators to model differences in 

speech rhythm across language classes (see also Barbosa, 2002). The COM is a mechanistic 

model of the relationship between the interstress interval (ISI), or duration of the prosodic 

foot, and the number of syllables contained in the foot. O’Dell and Nieminen’s original 

model was motivated by the observation by Eriksson (1991) that the ISI between prosodic 

feet was a simple linear function of the number of syllables 'n' in each foot, such that ISI = bn 

+ a (where a and b are constants). Eriksson further suggested that languages with putatively 

different rhythm classes could differ in the value of the constant term 'a'. Following this 

description, O'Dell & Nieminen produced a coupled-oscillator model that would behave in a 

manner described by Eriksson's formula. Central to the model were two oscillators, termed a 
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'stress group oscillator' and a 'syllable oscillator', and the general coupling function between 

these two oscillators (computed using their averaged phase difference). Durational changes 

(e.g. in ISI) were then explained in terms of the behaviour of these coupled oscillators.  

 O'Dell and Nieminen (1999) demonstrated that their COM was able to distinguish 

between languages with different rhythm patterns such as English and Spanish (via oscillator 

coupling strength). More recently, O’Dell et al. (2007, 2008) used the temporal structural of 

conversational Finnish speech to differentiate the effect of different hierarchical levels of 

rhythm (modelled as different coupled oscillators) via Bayesian inference. They reported that 

stress and mora were rhythmic factors in Finnish, and that there was also a possible role for 

foot-based timing.  

 Therefore, coupled oscillator models seek to explain the observed rhythmic 

parameters in speech (e.g. ISI durations, number of syllables per foot) in terms of mechanical 

interactions between hypothetical oscillators. This approach is powerful and can produce 

novel insights into the origins of rhythmic structure. However, the oscillators used in these 

models are purely hypothetical, and are meant only as abstract representations of linguistic 

entities such as stress feet and syllables. Unlike 'physiological' models like the auditory 

primal sketch model, the activity of these COM oscillators is often not motivated by 

psychological or neural mechanisms, or even constrained by actual acoustic data. A second 

major difference is that COM models (like O'Dell & Nieminen, 1999) are typically models of 

duration rather than of prominence. Finally, COM models have typically been used to 

explain global differences between language classes, rather than to provide local 

interpretations of actual rhythm patterns (i.e. in prosodic stress transcription). 
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1.4 THE NEED FOR A COMPLEMENTARY AMPLITUDE-BASED 

ACCOUNT OF SPEECH RHYTHM  

 

Having provided an overview of the very different previous approaches to measuring 

speech rhythm, the 'amplitude modulation' approach used in this thesis is now introduced. In 

terms of the acoustic cues to prosody and stress, it is known that stressed syllables tend to be 

higher in amplitude, longer in duration and have a distinctive fundamental frequency pattern 

(Hirst, 2006). Therefore, the alternating 'Strong-weak' syllable patterns that generate the 

percept of speech rhythm would also associated with patterns of change in all three acoustic 

dimensions (amplitude, duration and frequency). Traditionally, fundamental frequency was 

thought to play a primary role in prosodic stress perception (Fry, 1954). However, more 

recent studies using natural speech have found that amplitude and duration cues play a 

stronger role than fundamental frequency in prosodic prominence, and by extension in speech 

rhythm (Greenberg, 1999; Kochanski et al, 2005). Accordingly, methods of describing and 

measuring speech rhythm can be broadly classified as being either duration-based in 

approach (e.g. 'rhythm-metrics'; O'Dell and Nieminen's Coupled Oscillator Model, 1999) or 

amplitude-based in approach (e.g. p-centres).  

In natural speech, duration and amplitude cues to prosodic stress typically co-vary 

(Kochanski et al, 2005), therefore both duration-based and amplitude-based accounts of 

speech rhythm would be expected to yield complementary results. However, in the speech 

rhythm community, much more attention has been paid to duration-based accounts of speech 

rhythm than to amplitude-based accounts of speech rhythm. Amplitude-based measurements 

are commonly used in the p-centre literature (e.g. for detecting the 'beats' in single syllables), 

but have not been used as a more general metric for rhythm and prosodic patterning in speech 

(although see Silipo & Greenberg, 1999 and Tilsen & Johnson, 2008). Therefore, although 

amplitude cues are expected to contribute toward speech prosody and rhythm patterning, it is 

not known exactly how amplitude variations in the acoustic signal contribute toward the 

percept of speech rhythm. In this thesis, this gap in knowledge is addressed. Two amplitude-

based explanatory accounts of speech rhythm are developed and assessed - the AMPH 

models. It is not intended that these AMPH models should replace or supersede the existing 

duration-based accounts of speech rhythm. Rather, the work here provides a complementary 

account of speech rhythm, using the dynamic amplitude cues that are present in the speech 

amplitude envelope as amplitude modulation (AM) patterns.   
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1.5 THE AMPLITUDE MODULATION STATISTICS OF SOUND  

 

 Natural sounds are complex and richly-structured in the time and frequency domains. 

This rich structure in the acoustic signal can be described in terms of two-dimensional 

patterns of temporal and spectral amplitude modulation (e.g. Chi et al, 1999; Elliott & 

Theunissen, 2009). The statistics of these amplitude modulation patterns can provide 

valuable cues to the temporal structure of the sound. For example, Turner (2010) and 

McDermott & Simoncelli (2011) demonstrated that natural sounds such as rain, fire, birdsong 

and speech displayed different 'auditory textures' which could be summarised through 

statistics such as amplitude modulation depth, modulation time-scale and cross-frequency-

channel modulation dependency. The general importance for human psychological 

performance of learning the statistical structure of natural sounds is well-recognised (Winkler 

et al, 2009). For example, Bayesian approaches are attractive for characterizing the statistical 

regularities underpinning speech rhythm because they 'learn' statistical structure from the 

input. For natural sounds like rain, wind and fire, Turner (2010) demonstrated that 

Probabilistic Amplitude Demodulation (PAD) provided an effective Bayesian learning 

approach for extracting amplitude modulation structure. Consequently, he argued that natural 

sounds are characterised by amplitude (local sound intensity) modulation patterns which are 

correlated over long time scales and across multiple frequency bands.  

 If an important component of natural sounds is their modulation content, then 

amplitude modulation (AM) may be central to the perception of speech rhythm. Consistent 

with this proposal, the speech amplitude envelope contains strong periodicity at slow rates 

consistent with our experience of prosodic rhythm. For example in Figure 1.4, the 

autocorrelation function and power spectrum of the amplitude envelope of speech (metrical 

nursery rhymes and spontaneous conversation) is contrasted with the same measures for a 

mechanical sound, music and a natural sound (rain). Visual inspection shows that both types 

of speech contain strong periodicity, particularly at slow rates ~1-2 Hz and ~5 Hz. This is in 

contrast to rain, which shows little periodicity overall, and to the machine sound, which 

shows a single spike in periodicity at a higher frequency of ~10 Hz. In fact, the periodic 

profile of speech is most similar to that of Western music, which is also dominated by slow 

periodicity ~1-2 Hz. This is not surprising given that the music of a culture is thought to 

reflect the rhythm patterns of its language (e.g. Patel et al, 2006). This simple analysis 



27 

 

highlights the fact that speech has a strong temporal structure, as evidenced by periodic 

patterns in its amplitude envelope. 

 

Figure 1.4. The periodicity profile of five different sounds (5s segments). L-R columns: hand 

mixer, Western music, metrically-spoken nursery rhyme, spontaneous conversation, rain. The 

top row shows the sound-pressure waveform with its amplitude envelope overlaid in bold. 

The amplitude envelope was extracted using the Hilbert transform and low-pass filtered 

under 40 Hz. Prior to autocorrelation, the envelope was down-sampled to 500 Hz, and major 

trends in the envelope were removed by sequential polynomial curve fitting (1st-4th order), 

taking the residual after each fit. The de-trended envelope was then autocorrelated with itself 

over time-lags -2.5s to 2.5s, yielding the autocorrelation function. Finally, the power 

spectrum of the autocorrelation function was computed using the fast Fourier transform. The 

middle and bottom rows show the resulting envelope autocorrelation function (+/- 2.5s) and 

power spectra for each sound respectively. 

 

 

  

Machine                  Music            Metrical Speech      Conversation               Rain 
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1.6 THE AMPLITUDE ENVELOPE & THE MODULATION SPECTRUM 

 

 Speech is perhaps the most complex acoustic signal that the brain decodes, with 

important temporal structure at different timescales, as exemplified by formants 

(concentrations of energy in narrow frequency bands, timescale tens of ms), syllables 

(timescale hundreds of ms) and sentences (timescale seconds). Consequently, natural speech 

contains modulations in amplitude and frequency over a variety of timescales. These 

amplitude and frequency modulations are produced by articulators that dynamically regulate 

airflow through the vocal passage by changing its shape and length. Articulators also move 

over different time scales. For example, relatively slow movements such as the rise and fall 

of the jaw produce slower modulations associated with rhythm and prosody, while the more 

rapidly moving articulators, such as the lips and tongue, produce quickly-changing 

modulations that yield phonetic patterns (Nittrouer, 2006). However, the motion of slow and 

fast articulators is strongly co-ordinated in time. For example, Kelso et al (1986) 

demonstrated that there are stable oscillatory phase relations (cyclical relative temporal 

alignments) between jaw movement cycles and upper lip movement onsets across variations 

in speaking rate and stress patterns. Vocal tract movements also produce systematic facial 

and head movements that convey the syllable structure of speech (Yehia et al, 2002; Munhall 

et al., 2004).  

 The speech signal is commonly analysed using either the speech spectrogram, which 

emphasises frequency changes over time, or as a sound-pressure waveform, which 

emphasises amplitude changes over time (e.g. the amplitude envelope). These 

complementary ways of representing the speech signal are shown in Figure 1.5. Note that 

these different representations have led to different theoretical frameworks for linking 

acoustic statistical structure to linguistic/phonological experience. The spectrogram 

foregrounds phonetic changes, and is commonly analysed by associating changes in formant 

patterns, or 'formant transitions' (the rapidly-changing concentrations of energy in narrow 

frequency bands) to articulated consonants and vowels. Conversely, the sound-pressure 

waveform foregrounds syllabic structure and prosodic changes associated with slowly 

varying amplitude changes in the signal. This can be illustrated by referring to Figure 1.5. In 

the uttered phrase "MA-ry MA-ry", the [i] in syllable [] is associated with a rapid rise in the 

frequency of the second formant due to the tongue being positioned high at the front of the 

mouth (highlighted in black boxes in Figure 1.5a). Conversely, the large rise in amplitude at 
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the beginning of the phrase (Figure 1.5b), and again with the repetition of the stressed 

syllable [] in "MA-ry" are related to a larger mouth aperture (lowered jaw) producing 

greater airflow.  

 

Figure 1.5. Two complementary 

representations of the acoustic signal 

for the spoken words "MA-ry MA-ry" 

(a) Frequency spectrogram and first 

four formants (dotted lines) (b) 

Sound pressure waveform (pink) and 

amplitude envelope (bold line). Boxes 

in (a) indicate the rapid frequency 

rise in the second formant 

corresponding to the vowel [i] in     

/ry/. Boxes in (b) indicate the rapid 

increase in amplitude (intensity) 

associated with the onset of the 

stressed syllable 'MA'. 

 

 In signal processing terms, the speech signal can be modelled as the product of a 

quickly-varying carrier (fine structure) and a slower-varying amplitude envelope (bold 

outline in Figure 1.5b) that dynamically modulates the amplitude of the carrier. The envelope 

itself contains multiple rates of amplitude modulation (AM). For example, Figure 1.5b shows 

that the envelope is dominated by four slow peaks (highlighted with arrows), each associated 

with an articulated syllable (~4 Hz). However, the envelope also contains smaller, faster 

fluctuations up to 50 Hz that contain linguistic cues to phonetic manner of articulation, 

voicing, and vowel identity (Rosen, 1992). The range of modulation rates in the envelope can 

be expressed as a 'modulation spectrum' which plots the relative power at each modulation 

rate (Plomp, 1983a; Greenberg, 2006). An example of the typical modulation spectrum of 

speech (for the 1-2 kHz spectral band) is shown in Figure 1.6 (reproduced from Greenberg et 

al, 2003). 
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 The modulation spectrum typically shows the highest power between 2–12 Hz, 

peaking at around 3-5 Hz irrespective of differences in language or speech rate (Shannon et 

al., 1995; Houtgast & Steeneken, 1985; Greenberg et al, 2003; Greenberg, 2006). As the 

average duration of a syllable is 200 ms, modulations around 5 Hz are likely to relate to 

syllable-pattern information in speech (Greenberg et al, 2003; Ahissar et al, 2001; Luo & 

Poeppel, 2007). The peak in the modulation spectrum at the syllable rate thus indicates that 

the dominant modulation rate in the amplitude envelope is related to the syllable structure of 

speech. Modulations slower than the syllable rate relate to prosodic stress patterns (Plomp, 

1983b; Greenberg et al, 2003; Ghitza & Greenberg, 2009). If different rates of amplitude 

modulation (AM) in the envelope can be associated with prosodic units such as syllables and 

stress patterns, then the statistics of these slow AMs may provide the temporal regularities 

that underlie our perceptual experience of speech rhythm.  

 

  

Figure 1.6. Modulation spectrum 

for the 1-2 kHz frequency band, 

computed from 2 minutes of 

material from the SWITCHBOARD 

speech corpus. Reproduced from 

Greenberg et al, 2003. 
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1.7 EXTRACTING RHYTHM COMPONENTS FROM THE AMPLITUDE 

ENVELOPE  

 

 Recently, there has been growing interest in using amplitude envelope-based methods 

to investigate the temporal structure of the speech signal (e.g. Greenberg, 2003; Tilsen & 

Johnson, 2008). For example, Tilsen & Johnson (2008) extracted the amplitude envelope 

(under 10 Hz) from the 700-1300 Hz frequency band of speech, where the speech material 

was a corpus of conversational English. They divided the speech samples into 2-3 s chunks 

and computed the power spectrum (modulation spectrum) for each chunk. They then looked 

for peaks in the power spectrum of each chunk (indicative of strong periodicity), and 

computed how often these peaks occurred for different modulation rates across all the 

chunks. They found that overall, around 27% of the chunks contained clear peaks in their 

modulation spectrum between 1-5 Hz, out of which 18% came from modulations between 1-

3 Hz. This analysis demonstrated that even conversational speech contained a significant 

proportion (~a quarter) of strongly rhythmic stretches (chunks), where the strongest rate of 

modulation in these rhythmic stretches of speech was around 1-3 Hz (the prosodic stress 

rate). 

 If slow amplitude modulations in the envelope do indeed carry rhythmic information, 

as Greenberg (2003) and Tilsen & Johnson (2008) suggest, it would be interesting to extract 

these modulations from the envelope, and look for correlates between the acoustic 

modulation pattern, and the rhythm that listeners perceive. The conventional method for 

isolating modulations at different rates from the envelope is to use filtering (e.g. low-pass, 

high-pass or bandpass). This conventional approach (bandpass filtering) is used as the 

primary method in this thesis to isolate various 'bands' of modulation in the envelope. 

However, there have been more recent attempts to 'discover' and extract intrinsic slow 

modulation components from the amplitude envelope, without the use of filtering. Two such 

novel methods are described here, and the second method (PAD) is also used in these thesis. 

In a tone-vocoder experiment (Chapter 3 of this thesis), the envelope components generated 

via bandpass filtering or PAD are explicitly compared by human listeners. 
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1.7.1  EMPIRICAL MODE DECOMPOSITION (EMD) 

 

 Empirical mode decomposition (EMD) was pioneered by Huang et al. (1998) as a 

method for adaptively representing non-stationary signals as sums of zero-mean amplitude 

modulated and/or frequency modulated components, termed 'intrinsic mode functions' 

(IMFs). This method can be applied to the amplitude envelope of speech to discover its 

'dominant' oscillatory components. By definition, an IMF has the same number of extrema 

(maxima/minima) and zero crossings, and has a symmetric shape around zero. Unlike 

bandpass-filtered signals, however, IMFs can contain both amplitude and frequency 

modulation (see Figure 1.7). Practically, these IMFs are extracted using a 'sifting' process in 

which large trends (non-stationarity) in the data are iteratively removed. In this process, all 

the maxima (peaks) in the signal are interpolated (cubic spline method) to form an 'upper 

envelope', and all the minima (troughs) in the signal are similarly interpolated to form a 

'lower envelope'. The mean of the two envelopes at each time point is then calculated, and 

this mean (effectively a slow trend) is subtracted from the original signal to yield a residual. 

This trend removal process is then repeated iteratively with the residual until the new residual 

meets the IMF criteria (i.e. regarding extrema, crossings and symmetry). This residual is then 

called with first IMF, and typically corresponds to the fastest oscillation rate in the signal.  

 

Figure 1.7. Reproduced from Huang et al (1998). Example of a typical intrinsic mode 

function (IMF) with the same numbers of zero crossing and extrema, and symmetry about 

zero. 
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 The first IMF in the example shown from Huang et al, 1998 was obtained after 9 

iterations. After the first IMF is obtained, this is then subtracted from the original signal, and 

the entire sifting process is repeated with the residual to uncover other slower IMFs. The 

recovered IMFs themselves can then be analysed for their characteristic frequency and 

pattern. Arvaniti (2012) used this approach to compare the intrinsic mode functions extracted 

from speech samples of different languages. They found that the first and second IMFs 

extracted corresponded well to syllabic and supra-syllabic elements in speech respectively. 

Moreover, across languages, the frequency of the second IMF (supra-syllabic element) 

clustered around 2 Hz. The authors interpreted this 2 Hz result as evidence that languages 

tend to have a common stress rate that is close to the 'natural tempo' (Clarke, 1999) . 

 

1.7.2 PROBABILISTIC AMPLITUDE DEMODULATION (PAD) 

 

 The Probabilistic Amplitude Demodulation (PAD, Turner, 2010; Turner & Sahani, 

2011) method generates a 'model' of the signal (where the model comprises a positive slow 

envelope, and a fast carrier), and uses Bayesian statistical inference to identify the envelope 

with the best fit to the data. In the first step, the envelope is modelled by applying an 

exponential nonlinear function to a stationary Gaussian process. This produces a positive-

valued envelope whose mean is constant over time. Importantly, the degree of correlation 

between points in the envelope is controlled by the parameters of the model (entered 

manually or 'learned' from the data). This correlation determines the typical time-scale of 

variation in the envelope, which translates into its dominant modulation rate. The carrier is 

modelled as a Gaussian process which is uncorrelated in time (like white noise). The 

envelope and carrier are then be combined into one possible solution for the original data.  

 The choice of the most appropriate envelope and carrier solution for the data is then 

cast in Bayesian terms, and solved as a problem of probabilistic inference. For example, the 

parameters of the model determine the 'prior distributions' describing all possible envelopes 

and carriers that could be produced. The 'posterior distribution' describes the conditional 

probabilities associated with all the possible envelopes and carriers, given the original data 

(i.e. p(env,car\data)). The desired solution are the specific envelope and carrier that have the 

highest conditional probability, and represent the best fit for the data. Therefore, in the 

second step, a gradient-based method is used to search for this optimal solution where the 

probability is maximal, yielding the envelope with the best fit to the data. A useful feature of 
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PAD is that this process can be run recursively to recover different envelopes with different 

dominant modulation rates, as shown in Figure 1.8. This is done by changing the 

demodulation parameters after each iteration so that progressively slower and slower 

envelopes are returned, forming a 'modulation hierarchy'. Functionally therefore, both EMD 

and PAD methods can extract 'naturalistic' modulations from the amplitude envelope on 

different timescales. In the EMD method, these component modulations are termed IMFs, 

whereas in PAD they form tiers of a modulation hierarchy.  

 

Figure 1.8. Reproduced from Turner (2010). Example of a modulation hierarchy derived by 

recursive application of PAD. First, the data, 'a', are demodulated using PAD set to a fast 

timescale (left column). This yields a relatively quickly-varying envelope ('b') and a carrier 

('c'). Next, the demodulation process is re-applied to the extracted envelope 'b' (middle 

column), using a slower timescale than before. This yields a slower daughter envelope ('d') 

and a faster daughter envelope ('e'). This set of daughter envelopes form the two tiers of the 

modulation hierarchy. Mathematically, these two tiers ('d' & 'e') can be multiplied back with 

the very first carrier ('c', bottom left) to yield the original signal, 'a' (shown in the right 

column). 
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1.8 METHODS FOR AUTOMATIC SYLLABLE DETECTION 

 Since the 1970s, loudness or amplitude-based procedures have already been 

employed in the automatic detection and segmentation of continuous speech into syllables. 

For example, Sargent et al (1974) used peak-to-peak amplitude measurements in automatic 

syllable detection. This was based on the concept that sharp increases and decreases in 

amplitude typically accompany the onset and offset of syllable nuclei. This method achieved 

an average success rate of 86% for a corpus of 3.5 minutes of speech produced by 9 speakers. 

In other early studies, Mermelstein (Mermelstein & Kuhn, 1974; Mermelstein, 1975) 

proposed a 'convex hull algorithm' that used minima in the loudness function of speech in the 

automatic detection of syllable boundaries. When applied to a corpora of slow, careful speech 

in quiet (~400 syllables), this 'trough-finding' method yielded an impressively high success 

rate of around 90%. However, the author noted the need for a moderate amount of post-

processing to weed out fricative "syllabic fragments" that were erroneously detected as full 

syllable units. Pfitzinger et al (1996) also used a loudness-based automatic syllable detector, 

but they applied this to a more extensive corpora that included both read and spontaneous 

speech. In their method, the speech signal was first band-limited (e.g. 250-2500 Hz), and then 

the amplitude envelope was obtained by low-pass filtering with a cutoff of ~10 Hz. Syllable 

nuclei were located by identifying peaks in the slow-varying envelope. Pfitzinger et al (1996) 

obtained accuracy levels of 87% and 79% for read and spontaneous speech respectively. 

 More recent syllable detection methods have, in general, continued to be based on the 

concept of energy peak detection. However, improvements have been made in terms of the 

algorithms for boundary/peak detection, the incorporation of information from other acoustic 

cues (e.g. frequency), and the use of more sophisticated modelling (e.g. hidden markov 

models, HMMs) or supervised machine learning methods. Since the older studies have 

tended to use different speech corpora from the more recent studies, it is difficult to make 

direct comparisons regarding accuracy. Nonetheless, since the 1970s, a broad range of new 

approaches have been used to tackle the problem of syllable detection. A short selection of 

these studies is summarised here : 

(1) Unsupervised systems.  

 Jittiwarangkul et al (1998) proposed a new syllable boundary detection method based 

on iterative forwards and backwards searching for local maxima and minima in the 

smoothed energy contour of speech. When applied to the absolute energy contour of 
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speech, this search method produced a syllable detection accuracy of 93% for a set of 

36 utterances produced by 11 speakers. 

 Zhang & Glass (2009) developed a novel method of locating syllable vowel nuclei in 

which amplitude envelope peak-detection was guided by a rhythm-based prediction of 

the future location of peaks. In their method, the 'instantaneous' speech rhythm was 

estimated from the preceding peaks in the envelope, and this was used to predict 

intervals where the next syllable nucleus could appear. When tested on the TIMIT 

corpus, this rhythm-guided method was found to be able to locate ~87% of syllable 

vowels accurately.  

 Xie & Niyogi (2006) developed an unsupervised system for automatic detection of 

syllabic nuclei that used a combination of 2 acoustic cues : periodicity and energy. 

Syllable nuclei were identified by locating regions of speech with both high 

periodicity and high energy. This detection system was found to have an accuracy rate 

of 81.6% when tested on the TIMIT corpus, and continued to perform robustly in the 

face of noise degradation. 

 de Jong & Wempe (2009) used a similar method to Xie & Niyogi (2006) for the 

detection of syllable nuclei, via the combination of intensity and voicing (periodicity) 

cues. In their script written for the software programme Praat (Boersma & Weenink, 

2007), potential syllable nuclei were first identified by finding local peaks in the 

intensity contour of the speech sample. These peaks were then evaluated for voicing, 

and only voiced peaks were retained as bona fide syllable vowel nuclei. The authors 

then used this syllable information to compute the speech rate of the Dutch utterances. 

Although the accuracy of syllable vowel detection was not evaluated per se, the 

authors reported a very high correlation (up to r =.88) between the speech rates 

computed automatically via their detection algorithm, and the speech rates measured 

manually by hand. 

 (2) Supervised systems.  

 Howitt (2000) used the speech energy in a fixed frequency band of 300-900 Hz and 

applied a recursive convex hull algorithm to identify local peaks in energy. Three 

acoustic features from these peaks (depth, duration and level) were then combined 

using a multi-layer perceptron in order to identify 'vowel landmarks'. After training, 

the success rate for Howitt's perceptron vowel landmark detector was 88% for the 

TIMIT database.  
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 Shastri et al (1999) developed a sophisticated neural network model to detect and 

segment syllables from a modulation spectrogram (<16 Hz) representation of 

continuous speech. Their 'Temporal Flow Model' supported arbitrary link 

connectivity across multiple layers of nodes, and allowed for both feedforward and 

recurrent links. This complex system of links enabled the model to smooth and 

differentiate between signals, measure the duration of features, detect onsets, maintain 

context and carry out spatio-temporal feature detection and pattern matching. 

Therefore, the model was able to simulate cognitive functions such as short-term 

memory and context sensitivity. When trained and tested on a corpus of fluent 

'telephone speech', the Temporal Flow Model was found to be able to predict the 

onset of syllables with an accuracy of ~84%.  

 Other studies have gone a step further to combine the automatic detection of syllables 

with the automatic labelling of the prosodic prominence and stress of these syllables. A 

similar approach is used in this thesis. For example, Tamburini (2003) used a modified 

version of Mermelstein's convex hull algorithm to identify the location of syllable vowel 

nuclei in connected speech. He then developed a 'prominence function' to automatically 

determine the prominence of each detected syllable. This function took into account a 

combination of acoustic parameters including overall RMS energy, 'mid-frequency emphasis' 

(energy in the 500-2000 Hz band), nucleus duration, and pitch variation. Tamburini (2003) 

reported that the prominence detector successfully classified 80% of syllables from the 

TIMIT corpus as bring either prominent or non-prominent. Fujisawa and colleagues 

(Fujisawa et al, 1998; Minematsu et al, 1999) used a more complex approach where they 

specifically modelled the structure and position of syllables within words using context-

sensitive hidden markov models (HMMs). For example, in Fujisawa et al (1998), the HMMs 

used a combination of parameters such as LPC mel cepstrum coefficients, power (amplitude) 

and fundamental frequency (F0) to determine the local position of the word accent (stressed 

syllable). After being trained on multisyllabic words from the ATR English database, these 

HMMs were found to correctly detect around 90% of the stressed syllables in utterances by 

native English speakers.  

 Most recently, Kalinli (Kalinli & Narayanan, 2007; Kalinli, 2011) has begun to 

develop a new generation of biologically-inspired attention-based models of syllable and 

word prominence. These unsupervised models first extract salient auditory features from the 

speech stimulus with reference to processing mechanisms in the central auditory system. 
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These auditory features include intensity, temporal and frequency contrast, orientation and 

pitch. These features are then assembled into a single master saliency map, which is used to 

detect prominent syllables and words. In their initial study (Kalinli & Narayanan, 2007), the 

accuracy of the model was reported to be 75% for syllable prominence and 78% for word 

prominence. In a later study where a similar model was used specifically for syllable nucleus 

detection (Kanlinli, 2011), the method achieved an impressive 92% accuracy rate on the 

TIMIT speech corpus. These new psychologically-inspired models of syllable prominence 

detection show much promise for the future. In this thesis, a new method for syllable 

detection and prosodic prominence assignment is likewise inspired by neural cortical 

mechanisms of speech processing, namely the entrainment of neuronal oscillations to 

amplitude modulation patterns in speech (Giraud & Poeppel, 2012).  

 

1.9 CORTICAL OSCILLATIONS AND MODULATION HIERARCHIES IN 

THE AUDITORY SYSTEM 

 

 Empirical studies of animals and humans support the view that the auditory system 

possesses 'modulation channels' whose function is to extract patterns of amplitude 

modulation at different rates. Amplitude modulation channels have been demonstrated in 

neurophysiological studies with animals (Schreiner & Urbas, 1986; Langner & Schreiner, 

1988). For example, Schreiner & Urbas (1986) demonstrated that neurons in the auditory 

cortex of cats were able to follow amplitude modulations of pure tones. These neurons 

showed ‘best’ modulation frequencies from 3 Hz to 100 Hz, with a median value of about 20 

Hz. Psychophysiological masking experiments have also indicated the existence of similar 

modulation channels in the human auditory system (Houtgast, 1989; Bacon & Grantham, 

1989). Dau and colleagues (Dau et al 1996; Dau et al 1997a; Dau et al 1997b) described a 

model for the operation of a 'modulation filterbank' in the human auditory system. In essence, 

they proposed a system that filters different rates of amplitude modulation in the acoustic 

signal into logarithmically-scaled 'modulation bands'. For very low modulation rates (<10 

Hz), their 'modulation filterbank' specifically preserves modulator phase at the output of the 

modulation filter. This feature was included following observations from their 

psychophysical experiments (Dau, 1996) where, for modulation rates of up to about 10 Hz, 

subjects could discriminate changes in the starting phase of sinusoidal amplitude modulation 
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of a 5-kHz carrier. This concept of a 'modulation filterbank' is also implemented in the two 

proposed AM Phase Hierarchy models in this thesis. These filterbanks use a series of 

bandpass filters to separate slow modulations in the envelope into a hierarchical series of 

'AM tiers'. Like Dau and colleagues, the modulation filterbank also preserves phase 

information from these slow modulations, which are then used to compute prosodic rhythm 

patterns in speech.  

 The neural location of putative human 'modulation channels' that could mediate 

rhythm detection is currently unclear. However, animal studies suggest that the temporal 

resolution of neurons in the auditory system tends to decrease as one ascends from the 

periphery to the cortex (Schreiner & Urbas, 1986). For example, while neurons in the 

cochlear nucleus have a maximum response at modulation rates between 100-300 Hz 

(Fernald and Gerstein, 1972; Moller, 1974), AM responses in the inferior colliculus are tuned 

to modulation rates below 40 Hz (Rees & Moller, 1983). The median best modulation 

frequency measured in the auditory cortex is even lower at 20 Hz (Schreiner & Urbas, 1986). 

Consistent with animal studies, the temporal resolution of the AM response in humans also 

appears to degrade from the brainstem to the auditory cortex, with most cortical regions 

tuned to low AM frequencies around 4 - 8 Hz (Giraud et al, 2000). As such, it seems that the 

central, cortical neural mechanisms that might be best ‘tuned’ for rhythm detection at slow 

AM rates (i.e. below 8 Hz, 'stress' and 'syllable' rates). 

 In line with this, there is converging evidence from MEG and EEG studies that 

cortical oscillatory mechanisms play a role in tracking the slow modulation structure of 

speech. The brain generates a neuroelectric steady-state response (SSR) to amplitude 

modulations in speech (Ahissar et al, 2001; Aiken & Picton, 2008; Luo & Poeppel, 2007) and 

also to AM noise (e.g. Liegeois-Chauvel et al, 2004). This SSR tracks the stimulus 

modulation pattern and is itself oscillatory. In principle, therefore, if the speech envelope 

contains modulations at different timescales (rates), cortical oscillations should track these 

components at equivalent temporal rates. Indeed, the convergence between the characteristic 

timescales in speech and the dominant frequency bands in neuronal oscillations has been 

used to argue that oscillatory alignment (‘phase locking’) may be an important neural 

mechanism for speech parsing and hierarchical integration (Ghitza & Greenberg, 2009; 

Giraud & Poeppel, 2012; Schroeder et al, 2008; Zion Golumbic et al, 2012). For example, the 

neural delta band  (1-3 Hz) entrains to events that occur at ~300-1000 ms intervals, and is 

well-positioned to capture prosodic stress occurring on average every 493 ms (Dauer, 1983). 
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The neural theta band (3-7 Hz) tracks events occurring at ~150-300 ms intervals. This 

coincides with the average timing of syllable onsets, which have a typical duration of ~200 

ms (Greenberg, 2006). Finally, neural beta (12-25 Hz) and gamma (25-80 Hz) bands may 

track fast acoustic events that require temporal precision on the order of tens of milliseconds, 

such as formant transitions and differences in voice onset time. Therefore, oscillatory phase-

locking to AM patterns at different rates may support speech processing.  

 In humans, low frequency oscillations in the theta band have been shown to phase-

lock to amplitude modulation patterns in speech, and the strength of such phase-locking is 

associated with speech intelligibility (Ahissar et al, 2001; Luo & Poeppel, 2007; Luo et al, 

2010). Moreover, neural phase-locking also reflects attentional-tracking in situations that 

involve speaker separation (Ding & Simon, 2012). This neural pattern of phase-locking is so 

specific that temporal modulation patterns in speech can even be reconstructed from 

intracranial EEG patterns (Pasley et al, 2012) as well as from MEG activation patterns (Ding 

& Simon, 2012). Note however, that Peelle, Gross & Davis (in press) have recently 

demonstrated phase-locking in the MEG theta range to unintelligible speech. Although the 

participants were adults, this shows in principle that phase-locking could be present in infants 

even before speech is understood. Peelle et al further showed that phase-locking was 

enhanced for intelligible speech, suggesting that theta phase-locking is both stimulus-driven 

and reflective of successful speech processing.  

Neuronal oscillations are global fluctuations in the excitability of neuronal 

populations. These electrical fluctuations are measurable in vivo as the local field potential 

(LFP) of groups of neurons, which give rise to scalp-measured oscillatory activity. 

Neurophysiological studies have indicated that the timing of neuronal spiking activity is 

locked to the phase of the LFP (Kayser et al, 2009; Montemurro et al, 2008). These studies 

suggest that the oscillatory LFP controls the timing of neuronal excitability and gates spiking 

activity (Schroeder & Lakatos, 2009; Elhilali et al, 2004). By this account, the oscillatory 

phase of the LFP defines alternating periods of optimal excitability (during which a stimulus 

would elicit strong spiking activity), and low excitability (during which few or no spikes 

would be elicited). Hence, sensory information may be integrated during high excitability 

‘windows’ and then transmitted onwards to other brain areas during periods of low 

excitability. If periods of optimal excitability are timed to coincide with significant (high 

amplitude) events in the acoustic stream, this would align optimal neural processing periods 

with the arrival of speech information chunks, and low excitability with intervening silences 
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and noise (Zion Golumbic et al, 2012; Giraud & Poeppel, 2012). Hence, neuronal oscillations 

may provide a 'temporal windowing' function that allows speech encoding at lowered neural 

cost (spikes).  

Such sparse sampling of the speech signal may be adaptive because human speech is 

itself a sparse, stochastic signal characterised by strong bursts of energy interspersed with 

periods of low or no activity. These gaps or pauses occur between words and phrases, but 

also between syllables and phonemic segments. If the brain were to encode the entire speech 

signal with equal fidelity, precious cognitive resources could be wasted on encoding periods 

of low or no speech activity with the same level of detail as periods of high speech activity. 

While the presence of longer gaps or pauses in speaking can sometimes be meaningful in and 

of themselves (e.g. in signalling prosodic boundaries), a 'low resolution' encoding should 

suffice to indicate that such pauses have occurred. Moreover, in real-world listening 

conditions, the actual acoustic content of gaps and pauses is not pure silence, but background 

noise that is irrelevant to the spoken content, and could even be distracting for the listener. 

Therefore judicious temporal windowing or sampling could allow the brain to selectively 

capture only the most salient information in the signal (i.e. sections with high activity) with a 

high level of detail, and neuronal oscillations could operate as such a temporal windowing 

mechanism. Furthermore, Poeppel (2003) suggests that such temporal sampling could occur 

on multiple time scales (eg. syllable and phoneme), by multiple oscillatory rates (eg. theta 

and gamma) to capture critical information at different linguistic levels.  

 Finally, neuronal oscillations can exhibit hierarchical cross-frequency coupling or 

nesting. This means that the activity of faster frequencies is dynamically modulated by the 

activity of slower frequencies, resulting in 'nested' relationships. A well-established example 

of such nesting is hippocampal theta-gamma nesting, in which the phase of slow theta 

oscillations modulates the power of fast gamma oscillations (Canolty et al, 2006). 

Hierarchically-nested activity of this nature has also been demonstrated in the mammalian 

auditory cortex between delta, theta and gamma oscillations (Lakatos et al, 2005). Such 

hierarchical nesting may provide a mechanism for speech information that is sampled at slow 

(syllable, theta) and fast (phoneme, gamma) timescales to be aligned and integrated (Poeppel, 

2003; Giraud & Poeppel, 2012). If the neuronal oscillations that entrain to speech are 

hierarchical in nature, this raises the possibility that the speech envelope itself may also 

contain hierarchically-nested modulations on different timescales. This concept of 

hierarchical-nesting in the speech envelope is investigated in this thesis.  
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1.10 AMPLITUDE MODULATIONS AND SPEECH INTELLIGIBILITY 

 

 Amplitude modulations in the speech envelope have most commonly been 

investigated with regard to speech intelligibility. For example, in two seminal studies, 

Drullman and colleagues (Drullman et al 1994a, Drullman et al 1994b) examined the range 

of modulation frequencies in the envelope that were the most important for speech 

intelligibility. They systematically low-pass filtered or high-pass filtered the speech envelope 

at different cutoff frequencies, combined this filtered envelope back with the original fine 

structure, and tested the effect on speech intelligibility in each case. In the low-pass filtering 

exercise (Drullman et al, 1994a), the filter cutoffs increased logarithmically from 0 to 64 Hz 

(i.e. 0 Hz, 0.5 Hz, 1 Hz, 2 Hz, 4Hz, etc). Drullman et al (1994a) found that speech 

intelligibility increased as the low-pass filter cutoff increased from 0 up to 16 Hz. However, 

increasing the filter cutoff beyond 16 Hz (to 32 Hz or 64 Hz) did not significantly improve 

participants' performance any further. This result suggested that modulation frequencies 

below 16 Hz were the most important for speech intelligibility, while modulation frequencies 

above 16 Hz made only a marginal contribution (when all the lower frequencies were intact).  

 In their companion study (Drullman et al, 1994b), the speech envelope was high-pass 

filtered with logarithmically-increasing cutoff frequencies from 0 Hz up to 128 Hz. 

Therefore, an increasing proportion of low-frequency modulations was removed at each filter 

cutoff. As before, the filtered envelope was re-combined with the original fine structure. This 

time, Drullman et al (1994b) witnessed no reduction in speech intelligibility when only 

modulations below 4 Hz were removed. However, as the filter cutoff increased above 4 Hz, 

removing more and more modulations above 4 Hz, speech intelligibility began to decline 

significantly. This result suggested that modulation frequencies above 4Hz were the most 

important for speech intelligibility, while modulation frequencies below 4 Hz made only a 

marginal contribution (when all the higher frequencies were intact). 

 When the results of both studies are taken together, this suggests that modulation 

frequencies between 4-16 Hz in the speech envelope are the most important for speech 

intelligibility. Speech intelligibility suffers when modulations in this range are removed from 

the envelope. It is interesting to note that Drullman's range of 4-16 Hz includes the neural 

theta (3-7 Hz) and alpha (7-12 Hz) bands of oscillation. If neuronal oscillations track the 

activity of the speech envelope in a rate-dependent manner (i.e. theta oscillations track 

amplitude modulations between 3-7 Hz, and alpha oscillations track amplitude modulations 
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between 7-12 Hz), as suggested by Giraud & Poeppel (2012), this could explain why neural 

activity in the theta band is so strongly associated with speech intelligibility (e.g. Luo & 

Poeppel, 2007). However, by this argument, alpha oscillations should also be implicated in 

speech intelligibility. This is indeed the case, but unlike theta involvement, alpha 

involvement appears to be negatively related to speech intelligibility. For example, Obleser & 

Weisz (in press) reported that suppressed alpha activity was associated with better speech 

intelligibility.  

 This apparent trade-off between theta and alpha activity in the neural response to 

speech suggests that neural activation is not entirely stimulus-dependent. Rather, there may 

be selective enhancement and suppression of different modulation frequencies in speech, 

leading to different patterns of neural activity in different oscillatory bands. One reason that 

this may occur is if slower modulations around the theta range (3-7 Hz) correspond to longer 

stressed syllables, whereas faster modulations in the alpha range (7-12 Hz) correspond to 

shorter unstressed syllables (e.g. Greenberg et al, 2003). The processing of theta-rate stressed 

syllables could be enhanced because these often relate to important 'content' words in speech, 

as compared to 'function' words, which tend to be unstressed. Also, since the vast majority of 

words in the English language start with an initial stressed syllable (Cutler & Carter, 1987), 

these stressed syllables often signal important word boundaries. However, empirical research 

is required to investigate if, and why, such selective enhancement or suppression of 

modulation frequencies in the envelope would occur. 

 

1.11 NURSERY RHYMES, SPEECH RHYTHM AND PHONOLOGICAL 

DEVELOPMENT 

 

 In this thesis, nursery rhymes are used as the basis for the two new amplitude 

envelope-based models of speech rhythm. Nursery rhymes are simple poems that possess a 

basic regular metrical rhythmic structure. These familiar and popular children's poems (also 

known as 'Mother Goose rhymes') are commonly recited or sung to young English-learning 

children at a preschool or nursery age. Simpler rhymes (e.g. 'Rock-a-bye baby' and 'Twinkle 

twinkle little star') are also commonly sung to infants. Therefore, nursery rhymes are 

particularly suited for the aims of the current investigation, since they are a type of naturally-
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occurring rhythmic speech that infants and children will commonly encounter during 

language development.   

 Gueron (1974) studied the metrical structure of 130 Mother Goose nursery rhymes. 

She concluded that all but one of the nursery rhymes had a simple 'Strong (S) - weak (w)' 

alternating metrical pattern of : (w) S w S (w) S w S (w), with the weak elements in 

parenthesis omitted in some rhymes. In Gueron’s analysis, 'S' elements were usually realized 

by a single stressed syllable while 'w' elements were usually realised by between one to three 

unstressed syllables. The characteristic metrical patterning of nursery rhymes suggests that 

these poems capture the basic prosodic rhythms used in English. Consequently, nursery 

rhymes are good materials to use as the basis of a model of speech rhythm as they clearly 

represent the major metrical rhythm patterns present in spoken English. Learning nursery 

rhymes also affects phonological development, with empirical evidence that children's early 

knowledge of nursery rhymes predicts later individual differences in phonological awareness 

and success in learning to read (Maclean, Bryant & Bradley, 1987; Bryant et al, 1989). 

Consequently, children's nursery rhymes may be socio-cultural devices that have evolved to 

support early language learning. 

 What makes a nursery rhyme effective for language learning? It has been suggested 

that the rhyming words in nursery rhymes serve to highlight the phonological 'rime' units in 

words, thereby boosting children's phonological awareness (Maclean, Bryant & Bradley, 

1987). However, while rhyming words feature in many nursery rhymes, they are not unique 

to nursery rhymes. Indeed, rhyming words are a necessary ingredient of any literary poem or 

song, child- or adult-focused alike. Moreover, not all nursery rhymes contain an abundance 

of rhyming words. For example, 'London Bridge is Falling Down' arguably contains no 

rhyming word pairs at all. Many nursery rhymes use rhyming word pairs only 

parsimoniously, as 'bookends' to phrases, sentences or stanzas. For example, in the rhyme 

'Jack and Jill' (below), rhyming word pairs occur in two locations.  

"Jack and Jill went up the hill 

to fetch a pail of wa-ter, 

Jack fell down and broke his crown 

and Jill came tumbling af-ter" 

 

Rhyming word pairs occur within sentences ('Jill'/'hill', 'down'/'crown') where they occupy the 

same relative syllable position (3&7). They also occur at the end of a sentence 
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('water'/'after'), where again they occupy the same relative syllable position. These 

positional constraints on rhyming words suggests that they are used to highlight the overall 

structural symmetry of the poem. In this case, Jack and Jill consists of a binary hierarchical 

structure of two phrases per line, two lines per sentence, and two sentences per stanza, the 

boundaries of which are marked by rhyming word pairs. Moreover, the entire rhyme is 

prosodically patterned throughout with a binary alternating 'Strong(S)-weak(w)' stress 

pattern, which gives it a bouncing beat as in "JACK and JILL went UP the HILL to...". This 

alternating 'S-w' motif also occurs at longer timescales in the poem, forming a prosodic 

hierarchy that can also be represented as nested oscillation patterns, as shown in Figure 1.9. 

In Chapter 2, the idea that the linguistic prosodic hierarchy can be represented as nested 

amplitude modulation patterns is explored further. 

   

Figure 1.9. Hypothetical example of a modulation hierarchy for the rhyme 'Jack and Jill' 

showing binary nested modulations at different timescales, each corresponding to a different 

prosodic structure. Unit segments at each timescale are highlighted as separate blocks. Each 

segment's prosodic strength is indicated with arrows marked 'S' (strong) or 'w' (weak), as 

determined by its phase of occurrence with respect to the next higher tier. 
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Figure 1.9 illustrates that the words in the nursery rhyme 'Jack and Jill' naturally produce a 

strong hierarchical prosodic and rhythmic structure. This rhythmic structure is further 

accentuated by the strategic positioning of rhyming word pairs. As indicated from Gueron's 

(1974) analysis, such regular hierarchical rhythmic patterning may be a ubiquitous feature of 

nursery rhymes in general. Therefore, the rhythm structure of nursery rhymes may help 

children to develop an awareness of prosodic structure, inasmuch as the rhyming words help 

children to develop phonological awareness of onset and rime units. If the rhythms in nursery 

rhymes encourage language development, then speaking to children in a rhythmic manner 

(irrespective of the spoken material itself) may also generally be adaptive for language 

learning. The idea that an exaggerated prosodic pattern is beneficial for language learning is 

not new. For example, adults spontaneously switch to a prosodically-exaggerated register 

when speaking to infants and children. This speaking style has variously been referred to as 

'motherese', 'infant-directed speech' or 'child-directed speech' (Fernald, 1989; Fernald & 

Simon, 1984). In contrast to the way we speak to other adults, 'motherese' is higher pitched, 

contains smoother and wider pitch excursions, is slower, and contains more pauses and 

repetitions (Broen, 1972; Fernald & Simon, 1984; Fernald, 1989; Albin & Echols, 1996). 

This prosodic exaggeration may increase auditory salience for the infant, allowing auditory 

information to be processed and remembered more efficiently (Divenyi & Hirsh, 1978). 

However, the prosodic exaggeration in motherese could also change the temporal structure 

of speech, for example by increasing the hierarchical patterning or temporal regularity of 

amplitude modulation patterns. Such temporal structural enhancement could benefit speech 

processing by making word and phrase boundaries more prominent, thereby making fluent 

speech easier to segment. In Chapter 7, this research question is examined directly when the 

modulation structure of child-directed speech is compared with that of adult-directed speech. 

On the other hand, if children have a developmental deficit which makes them less sensitive 

to the prosodic exaggeration in motherese and in nursery rhymes, they would also receive 

less benefit from these natural 'language learning devices'. For children with developmental 

dyslexia, this is indeed the case. 
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1.12 PROSODIC SENSITIVITY IN DEVELOPMENTAL DYSLEXIA 

 

 Developmental dyslexia is a neurodevelopmental condition found across languages, 

for which the cognitive hallmark is impaired phonological processing (Snowling, 2000; 

Ziegler & Goswami, 2005). The auditory parameter most consistently found to be impaired 

has been perception of onsets (rise times) in the amplitude envelope (Goswami et al., 2002; 

Goswami, 2008; Goswami, 2010; Goswami, 2011; Hämäläinen et al., 2005; Hämäläinen et 

al., 2009). The onset rise time refers to the time taken for a sound to reach its peak amplitude 

after its initial onset. This is illustrated in Figure 1.10 where the tone on the left has a fast 

onset rise time (15ms), while the tone on the right has a much slower onset rise time (300ms). 

When played to listeners, the tone on the left is perceived as having a sharp, strong onset 

(like a trumpet note), whereas the tone on the right is perceived as having a more gentle and 

gradual onset (like a bowed violin note). In the amplitude envelope of speech, the most 

prominent onsets typically correspond to the onsets of syllables. This is illustrated in the 

Figure 1.11, where the individual syllable onset rise times are shown as red arrows, overlaid 

on the green amplitude envelope. 

 As discussed previously in Section 1.3.2, the perceptual 'moment of occurrence' or p-

centre of a syllable is typically associated with the onset of its vowel nucleus (Morton et al, 

1976; Allen, 1972; Scott, 1993; 1998). These vowel onsets are in turn acoustically-associated 

with amplitude modulation patterns in the speech envelope. Therefore, problems with 

detecting amplitude changes in the envelope (e.g. onset rise times) should also affect the 

detection of p-centres in speech. Poor p-centre detection in turn should affect the perception 

of rhythm and prosodic patterns in speech. This predicts that individuals with dyslexia (who 

are impaired on rise time perception) should also have difficulties with the perception of 

rhythm and stress in speech. Several previous studies have suggested that this is indeed the 

case for English-speaking children (Kitzen, 2001; Goswami et al, 2010). Furthermore, young 

Dutch children at risk of dyslexia have also been shown to have difficulties in producing 

imitations of non-words with irregular stress patterns (de Bree et al, 2006). Developmentally, 

this deficit may take the dyslexic child on a different, less optimal trajectory of language 

acquisition. In the first year, an infant with a reduced sensitivity to speech rhythm may be 

less accurate in using prosodic cues to segment words from the speech stream. Through early 

childhood, as the child is developing his or her phonological representations, rhythmic stress 

patterns in speech may be underspecified, leading to impoverished representations of speech 



48 

 

sounds. For typically developing children, nursery rhymes could be powerful phonological 

learning devices helping them to quickly acquire the normal rhythmic patterns of spoken 

English. By contrast, dyslexic children would be less accurate in perceiving the rhythms of 

nursery rhymes, slower to acquire these long-scale rhythmic templates, and less able to use 

them for speech processing.   

 

Figure 1.10. Acoustic waveform of two pure tones with a fast (left) and slow (right) onset rise 

time. Rise times are indicated with arrows. Reproduced from Richardson et al (2004). 

 

 

Figure 1.11. Example of onset rise times in the speech amplitude envelope and their 

relationship to syllable onsets. The acoustic waveform of the sentence is shown on top in 

black. The amplitude envelope is shown at the bottom in green. Large onset rises in the 

amplitude envelope are marked with red arrows, and correspond well to the onsets of 

syllables in the sentence. 

 

Time (s) Time (s) 
0.765 1.050 
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 In the initial phase of this PhD project (prior to the development of the speech rhythm 

models), a study was carried out with adult dyslexics to test their perception of prosodic 

stress patterns in multisyllabic words. The experimental stimuli comprised two sets of 4-

syllable words that differed in their lexical stress pattern, imparting a different characteristic 

rhythm to each set of words. 20 words followed a  'S-w-w-w' lexical stress pattern, such as 

'DI-ffi-cul-ty', while the other 20 words followed a 'w-S-w-w' stress pattern, such as 'ma-

TER-ni-ty'. Two tokens were then produced for each word. One token represented its correct 

stress pattern (eg. 'DI-ffi-cul-ty', S-w-w-w), while the other token represented the opposite, 

incorrect stress pattern (eg. 'di-FFI-culty', w-S-w-w). Using these tokens, pairs of words were 

created where the stress patterning varied but the phonological content was kept constant (eg. 

'DI-ffi-cul-ty' vs 'di-FFI-cul-ty'), or where both stress patterning and phonological content 

varied (eg. 'DI-ffi-cul-ty' vs 'ma-TER-ni-ty'). These two different types of word pairs were 

presented in two separate stress discrimination experiments.  

 In the first experiment, participants heard pairs of words that were phonologically 

identical, but had either the same (e.g.'DI-ffi-cul-ty' vs 'DI-ffi-cul-ty') or a different (e.g. 'DI-

ffi-cul-ty' vs 'di-FFI-cul-ty') stress pattern. The two spoken word tokens were presented one 

after the other via headphones. Participants then indicated via a button press whether they 

thought the tokens had the same or a different stress pattern. In the second experiment, 

participants heard pairs of words that were phonologically different, but had either the same 

e.g. (eg. 'DI-ffi-cul-ty' vs 'MI-li-ta-ry') or a different e.g. (eg. 'DI-ffi-cul-ty' vs 'ma-TER-ni-

ty') stress pattern. Participants again indicated whether they had heard the same or a different 

stress pattern across the word pair. As predicted, dyslexics performed significantly more 

poorly than non-dyslexic participants in both experiments. Since dyslexics performed poorly 

even when the phonological information of the word pair was identical, this indicated that the 

source of the dyslexic deficit was in the perception of acoustic cues to prosodic stress, such 

as differences in amplitude, duration or frequency between stressed and unstressed syllables. 

Consistent with this interpretation, participant's performance on both tasks was strongly 

related to their auditory psychoacoustic threshold for onset rise time detection, though not for 

frequency or (static) intensity change detection. The published details of this study are 

included as Appendix 1.2 :  Leong, V., Hamalainen, J., Soltesz, F., & Goswami, U. (2011). 

Rise time perception and detection of syllable stress in adults with dyslexia. Journal of 

Memory and Language, 64, 59-73. In Chapter 8 of this thesis, this research thread on 

dyslexia is continued with an AM-based investigation into the perception and production of 

rhythmic speech in adults with dyslexia.  
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1.13 THESIS OVERVIEW 

 

 In this thesis, two novel models of speech rhythm are proposed, based on amplitude 

modulation patterns in the speech envelope. Both models use an hierarchically-nested 

representation of amplitude modulation patterns in the speech envelope (the 'AM hierarchy'), 

in symmetry to hierarchically-nested neuronal oscillations. Like the newborn infant, both of 

these models are capable of detecting prosodic rhythm patterns solely from the acoustic 

information in the speech signal, without the need for any prior manual speech labelling or 

phonetic segmentation. This 'tabula rasa' approach allows for 'naive' speech segmentation 

schemes to emerge (e.g. via a metrical segmentation strategy) without recourse to lexical 

knowledge about words or phonemes.   

 In Part II of this thesis, the first Amplitude Modulation Phase Hierarchy (AMPH) 

model for speech rhythm is introduced (Chapter 2). In this original AMPH model, the AM 

hierarchy is derived theoretically, on the basis of previous findings and literature. The Stress 

Phase Code is also introduced. This is a computational scheme for identifying prosodic 

'Strong-weak' stress patterns using the phase relationships between two key tiers in the AM 

hierarchy (Stress AM & Syllable AM). Finally, the core assumptions of the AMPH model are 

tested in a tone-vocoding experiment with human listeners (Chapter 3).  

 In Part III of this thesis, a new Spectral Amplitude Modulation Phase Hierarchy (S-

AMPH) model is introduced. The S-AMPH model addresses several short-comings of the 

original AMPH model. First, a spectral sub-band representation of the speech envelope is 

used, rather than the wholeband speech envelope. This imparts the model with greater 

dexterity in identifying the rhythm-bearing syllable vowel patterns in speech. Second, a new 

'emergent' AM hierarchy is derived, based on the modulation statistics of the acoustic signal. 

These two improvements collectively result in a new spectro-temporal representation of the 

speech envelope, which is described in Chapter 4. In line with this new spectro-temporal 

representation, new prosodic indices for computing 'Strong-weak' stress patterns are 

developed in Chapter 5. Finally, the original AMPH and new S-AMPH models are 

functionally evaluated in terms of their success in automatic syllable detection and prosodic 

stress transcription (Chapter 6). 

 In Part IV of this thesis, the S-AMPH model is used as an analytical tool to compare 

the underlying temporal structure of different types of speech. Two different experimental 

case studies are presented. In Chapter 7, the S-AMPH model is used to determine how the 
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spectro-temporal structure of child-directed speech (CDS) differs from that of adult-directed 

speech (ADS). In Chapter 8, the perception and production of rhythmic speech is investigated 

in adults with and without developmental dyslexia. The novel AM-based analysis method is 

used alongside more traditional linguistic analysis methods. 

 Finally, Part V provides an overall discussion and synthesis of the key themes arising 

from this thesis, and possible future directions for this line of research. 
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DEFINITIONS OF COMMON TERMINOLOGY 

USED 
 

 In this thesis, the terms 'speech rhythm', 'speech prosody' and 'speech rhythmic 

structure' all refer to the alternating pattern of 'Strong' (stressed) and 'weak' (unstressed) 

syllables in speech.  

 

 The term 'prosodic foot' or 'stress foot' refers to the organisation of groups of Strong and 

weak syllables into motifs. Common foot motifs in English are the two-syllable trochee 

('S-w') and iamb ('w-S'). However, longer feet with more syllables also occur, such as the 

three-syllable dactyl ('S-w-w') or amphibrach ('w-S-w'). 

 

 If a sentence consists of a regularly-repeating foot motif (e.g. nursery rhyme sentences), 

these sentences are said to possess a 'metrical' rhythm.  

 

 In this thesis, the 'meter' of a sentence refers to the number of syllables in its repeating 

foot motif, and is analogous to the number of beats per bar in music. For example, a 

sentence that consists of repeating two-syllable trochees is described as having a 'duple' 

meter. A sentence that consists of repeating three-syllable dactyls is described as having a 

'triple' meter. 

 

 Where attention is drawn to the specific sequence of Strong and weak syllables within the 

foot (i.e. trochee or iamb) rather than simply the number of syllables, the term 'metrical 

pattern' is used. 

 

 The amplitude envelope is also alternately referred to as the speech envelope. 
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AIMS OF THE MODEL 
 

 Previous rhythm-metric approaches to describing speech rhythm have focused on 

durational changes between phonetic segments in speech. The limited success achieved by 

these methods (e.g. see Arvaniti, 2009) has motivated an on-going search for new and better 

ways to represent the rhythm information in speech (e.g. Todd, 1994; O'Dell and Nieminen, 

1999; Tilsen & Johnson, 2008). In this spirit of improvement and discovery, a new model of 

speech rhythm is proposed here, adopting an amplitude-based approach to speech rhythm. 

The aims of the model are to make explicit (tease out) any cues to speech rhythm that are 

present in the amplitude envelope of speech, and to provide a computational scheme for how 

these amplitude cues relate to the rhythm patterns perceived by the listener. 

 In line with these aims, two major research questions are posed :                               

(1) Where is speech rhythm information located in the modulation spectrum of the envelope? 

(2) How is speech rhythm information 'coded' within the amplitude modulation patterns in 

the envelope?  

 To answer the first question, the modulation spectrum of the envelope is sub-divided 

into 5 modulation rate bands. Rather than using an arithmetic division of the spectrum (i.e. 

using linear or logarithmic spacing between bands), the boundaries of the modulation rate 

bands are theoretically-determined with reference to the linguistic prosodic hierarchy. That 

is, each modulation band is designed to capture a different linguistic tier from the prosodic 

hierarchy, such as stress feet, syllables or phonemes. The resulting 5-tier (band) AM 

hierarchy is therefore a concrete representation of the abstract linguistic prosodic hierarchy. 

In linguistic terms, speech rhythm arises from the organisation of alternating Strong and 

weak syllables into prosodic stress feet. That is, several syllables at one tier of the hierarchy 

are grouped together to form a single rhythmic motif at a higher tier of the hierarchy - the 

prosodic Stress foot. By analogy, in the AM hierarchy, speech rhythm should arise from the 

nesting of several Syllable AM cycles within a higher level Stress AM cycle, collectively 

forming the rhythm pattern of a prosodic Stress foot. Therefore, in the model proposed here, 

speech rhythm information is primarily associated with Syllable AM and Stress AM tiers of 

the AM hierarchy. 



56 

 

  If nested Stress AM and Syllable AM patterns form a prosodic stress foot, how is the 

Strong-weak patterning of syllables within the foot represented? In other words, how does 

one convert the continuously-varying AM patterns into a discrete representation of Strong 

and weak syllables, as perceived by the listener? To answer this second research question, a 

Stress Phase Code is proposed. This is a computational scheme to convert AM patterns into 

Strong-weak syllable patterns. In this Stress Phase Code, the key statistic used is the local 

instantaneous phase relationship between the Stress and Syllable AM tiers (hence 'phase 

code'). This Stress-Syllable phase relationship determines the perceived prominence of 

individual syllables, and by extension, the rhythm pattern of a sentence. Therefore, since this 

model uses the phase information between tiers of an AM hierarchy to provide a description 

of speech rhythm, it is called the AM Phase Hierarchy model, or AMPH model in short. 

 Chapter 2 explains the derivation of the AMPH model as a signal-based method for 

computing prosodic rhythm from the amplitude modulation structure of speech. Chapter 3 

tests the psychological validity of the assumptions of the AMPH model in a tone-vocoding 

experiment. The aim of this experiment is to see if human listeners perceive prosodic rhythm 

using the same amplitude modulation cues used by the AMPH model to compute rhythm. 
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2 THE AMPLITUDE MODULATION PHASE 

HIERARCHY (AMPH) MODEL OF METRICAL 

SPEECH RHYTHM 
 

2.1 THE MODULATION SPECTRUM AND THE PROSODIC 

HIERARCHY 
 

 Recall from the Introduction (Section 1.6) that the modulation spectrum is the power 

profile of the various amplitude modulation rates present in the speech envelope. Although 

different researchers use slightly different upper rate limits to define the speech envelope, 

Rosen (1992) considers amplitude modulations rates of up to 50 Hz to be part of the speech 

envelope. Modulations of up to 50 Hz are thought to contain prosodic cues, as well as 

segmental cues to manner of articulation, voicing and vowel identity. Accordingly, this 

relatively high upper rate limit for the envelope is used in the AMPH model (although the 

focus of the model is on the slower modulation rates).  

Figure 2.1. Reproduced from Plomp (1983b). Modulation spectrum of running speech for 5 

octave-spaced speech frequency bands (centre frequencies at 0.25 kHz, 0.5 kHz, 1 kHz, 2 kHz 

and 4 kHz as marked). The y-axis shows the modulation index, 'm', which is the ratio between 

the (peak) amplitude of the envelope and the amplitude of the un-modulated carrier. The x-

axis shows the range of modulation frequencies in the envelope from 0.1-40 Hz. Labels 

marked by the 

original author (e.g. 

'sentence units' or 

'stressed syllables') 

indicate intuitions 

regarding different 

linguistic units and 

their key associated 

modulation 

frequencies (arrows). 
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 When considering the modulation spectrum of the speech envelope, it is commonly 

thought that speech units of different lengths give rise to amplitude modulations at different 

rates. For example, Figure 2.1 shows a plot of the modulation spectrum reproduced from 

Plomp (1983b), in which the correspondence between different speech units (words, 

syllables, etc) and different modulation rates has been annotated. In Figure 2.1, Plomp 

(1983b) associates the main peak in the modulation spectrum (~3-5 Hz across all frequency 

bands) with words and syllables. Slower modulations to the left of this peak (~1 Hz) are 

associated with longer stressed syllables, whereas faster modulations to the right of this peak 

(>12 Hz) are associated with shorter phonemes. 

 Later studies by Greenberg and colleagues (e.g. Greenberg et al, 2003; Greenberg, 

2006; Ghitza & Greenberg, 2009) have supported Plomp's approximate division of the 

modulation spectrum (for the most part). For example, Greenberg et al (2003) confirmed that 

the long-term modulation spectrum of speech does indeed consistently peak around 3-5 Hz. 

Moreover, since the typical measured duration of syllables in speech is ~200 ms (i.e. ~5 Hz), 

this modulation peak at ~3-5 Hz is indeed likely to correspond to syllable patterns in speech. 

Like Plomp, Greenberg (Greenberg et al, 2003; Ghitza & Greenberg, 2009) also proposes 

that modulations slower than the 3-5 Hz peak correspond to stressed syllables, which are 

longer in duration than unstressed syllables, and therefore are associated with a slower 

modulation rate.  

 However, in Greenberg et al's (2003) data, virtually no syllables (even stressed 

syllables) had a longer duration than ~500 ms (2 Hz). This suggests that modulation rates 

under 2 Hz must correspond to larger linguistic units, such as multi-syllable words or stress 

feet, rather than to individual stressed syllables (as annotated by Plomp in Figure 2.1). For 

example, the trochaic stress foot describes a 'Strong-weak' bi-syllable pattern, and is found in 

words like "DOC-tor" and "MU-mmy". If each syllable is taken to have a length of 200 ms, 

the total length of the trochee foot would be 400 ms, which corresponds to a modulation rate 

of 2.5 Hz. Therefore, slow modulations around 2.5 Hz or under should reflect the modulation 

patterns of prosodic stress feet. Consistent with this view, Dauer (1983) found that the 

average duration of inter-stress intervals in English was 493 ms, corresponding to a stress 

rate of around 2 Hz. Therefore, Plomp's annotated division of the modulation spectrum 

should be revised to incorporate prosodic stress feet, as illustrated in Figure 2.2. Notice that 

the linguistic units in Figure 2.2 are also components of the linguistic prosodic hierarchy 

(e.g. Selkirk, 1980, 1984, 1986). Therefore, as argued in the introduction to Part II, the 
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modulation spectrum may be divided (on the basis of theoretical assumptions) into 

modulation bands or tiers that capture different tiers of the linguistic prosodic hierarchy. By 

analogy to the linguistic hierarchy, these modulation bands or tiers would also form an AM 

hierarchy of modulation patterns, at prosodically-important timescales. 

 

Figure 2.2. Illustration of the proposed correspondence between linguistic units in the 

prosodic hierarchy and associated modulation rates in the modulation spectrum, forming an 

AM hierarchy
3
.The x-axis and labels are replicated from Figure 2.1, with the inclusion of 

prosodic stress feet as a new unit. Rather than associating linguistic units with certain key 

modulation rates (as in Figure 2.1), they are associated with partially overlapping 

modulation rate bands.  

 

 

 

 

 Recall from Section 1.2 of the Introduction that the linguistic prosodic hierarchy is a 

way to represent the abstract prosodic structure of speech. This prosodic structure is 

commonly visualised in grid or tree form, where prosodic patterns emerge from the 

hierarchical nesting of elements in lower tiers within higher tiers (Selkirk, 1980, 1984, 1986; 

Liberman & Prince, 1977; Hayes, 1995). By extension, the AM hierarchy should also be able 

to capture acoustic prosodic patterns in speech. These prosodic patterns could be formed 

from the hierarchical nesting of faster AM patterns (e.g. Syllable tier) within slower AM 

patterns (e.g. Stress tier). Accordingly, the AMPH model proposed here represents speech 

rhythm patterns as Syllable tier AM cycles that are hierarchically-nested within Stress tier 

AM cycles. Crucially, each Stress tier cycle is equivalent to a prosodic stress foot, and the 

Syllable AM cycles nested within this Stress cycle represent syllables within the prosodic 

                                                 
3
 The AM hierarchy illustrated in Figure 2.2 consists of 4 different modulation bands, or tiers. However, in the 

AMPH model there are 5 tiers in the AM hierarchy. This is because the AMPH model is based on strongly 

rhythmic nursery rhyme speech. Therefore the 'Syllable' band is further sub-divided into 2 separate tiers. These 

2 tiers correspond to syllables that occupy a single whole rhythmic beat, and syllables that only occupy part of a 

rhythmic beat ('sub-beat'). The derivation of the 5 AM tiers in the AMPH model is further described in Section 

2.4. 

Syllables 

Stress Feet 

Phrase/Sentence 

Phonemes 
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stress foot. This functional equivalence between linguistic units (stress foot and syllables) 

and their respective AM tier cycles is shown in Figure 2.3. In the linguistic prosodic 

hierarchy, the relative prosodic strength of a unit (e.g. syllable) is denoted with different 

letters, either 'S' for Strong or 'w' for weak (see Figure 2.3). In the AM hierarchy, the 

prosodic strength of each AM cycle (representing a single linguistic unit) is determined by its 

phase relationship to the next highest tier (e.g. the stress tier). This 'phase coding' of prosodic 

strength is described further in Section 2.5.2.  

 

 Figure 2.3. Hypothetical example of hierarchical nesting within the linguistic prosodic 

hierarchy, and equivalent nesting of AM cycles in the AM hierarchy. In both hierarchies, 

each tier represents a different prosodic level. Units at a lower level are nested within units 

at a higher level. This nesting is shown using coloured blocks of different size. In the 

linguistic hierarchy, each single linguistic unit (e.g. syllable or foot) is denoted with a single 

letter. This letter corresponds to the unit's prosodic strength, as either 'S' (strong) or 'w' 

(weak). In the AM hierarchy, each single linguistic unit corresponds to a single AM cycle. 

For example, in the bottom syllable AM tier, the four syllables are represented as four AM 

cycles, each boxed in green.  

 

Linguistic tier       AM tier  

(word)          (phrase/sentence AM) 

    

(foot)                     w                   S   (stress foot AM) 

    

(syllable)        S     w           S           w  (syllable AM) 

            MI /      ssi /      SSI/        ppi 

  

 Therefore the AM hierarchy (made up of modulations from the speech envelope), 

represents prosodic stress patterns as hierarchically-nested AM cycles. This means that if the 

prosodic stress pattern of an utterance is unknown, its stress pattern can be inferred from the 

acoustic signal by looking at nesting patterns within the AM hierarchy of the speech 

envelope. The AMPH model is a systematic way to extract these rhythm patterns from the 

speech envelope. The key processes in the AMPH model are outlined next. 
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2.2 OVERVIEW OF THE AMPH MODEL 

 

 The essential premise of the AM Phase Hierarchy (AMPH) model is that prosodic 

rhythm patterns in speech may be inferred from the phase relationships between 

hierarchically-nested slow amplitude modulations (AMs) in the acoustic signal. When speech 

is temporally-regular (e.g. metronome-timed speech), the various AMs hierarchical tiers are 

stably phase-locked, providing consistent phase information that can be used to infer 

rhythmic meter and prosodic pattern. Therefore, metronome-timed nursery rhyme speech is 

used as the basis for the AMPH model
4
.  

Figure 2.4. Schematic overview of the processing stages in the AM Phase Hierarchy Model 

using an example of the 8-syllable trochaic nursery rhyme sentence "MA-ry MA-ry QUITE 

con-TRA-ry", where stressed syllables are indicated in capital letters. (A) Original sound 

pressure waveform of the speech signal, showing amplitude changes over time. (B) Extracted 

AM hierarchy consisting of 5 AM tiers, each at a different modulation rate. Each AM tier is 

shown using a different colour. (C) Oscillatory phase of the Stress AM (solid line) and 

Syllable AM (dotted line), projected onto a cosine function to show the oscillatory shape. (D) 

Decoded prominence value for each syllable using the Stress Phase Code. Strong (stressed) 

syllables with prominence values >0.5 are indicated as 'S', weak (unstressed) syllables with 

prominence values <0.5 are indicated as 'w'. 

                                                 
4
 In Part III of the thesis, the same 'phase coding' principles are applied in a revised version of the AMPH 

model. This new model is then tested on freely-produced (non-metronome timed) speech. 
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 Figure 2.4 shows a summary flowchart of the key processing stages in the AMPH 

model. First, an hierarchy of AMs is extracted from the wideband amplitude envelope, 

selecting theoretically-driven temporal rates ranging from slow (<1 Hz) to phonetic (here 20 

– 50 Hz). Each tier of the AM hierarchy relates to linguistic units of different length, such as 

syllables or prosodic feet. Next, the angular oscillatory phase is computed for 'Stress' and 

'Syllable' tiers of the hierarchy using the Hilbert transform. By taking only the angular phase 

of the AMs, transient fluctuations in power are discarded, treating each AM as if it were a 

pure sinusoid. For illustration, Figure 2.4 projects the Stress and Syllable phase series onto 

cosine functions in order to show their equivalent oscillatory shape (third panel). However, 

the phase series themselves (used for computation) vary between -π and π radians in an 

approximately linear fashion.  

 Two types of rhythmic information are extracted from the Stress-Syllable phase 

series. First, rhythmic meter (e.g. duple or triple meter) is inferred from the long-term ratio of 

angular phase-locking between Stress and Syllable-phase series (described further in Section 

2.5.1). Second, the prosodic prominence pattern of strong and weak syllables is assessed 

based on local (momentary) phase relationships within the Stress-Syllable phase series using 

a 'Stress Phase Code' (Section 2.5.2). This Phase Code assigns a numerical prominence value 

(0 to 1) to each syllable, as shown in the fourth panel of Figure 2.4. Finally, meter and stress 

pattern information are combined in a rhythm-based segmentation scheme for the sentence 

(Section 2.6).  
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2.3 MATERIALS  

 

 A set of 6 familiar English nursery rhyme sentences with contrasting metrical rhythm 

patterns formed the basis for deriving the AM Phase Hierarchy model. These are listed in 

Table 2.1, taking the first line of the nursery rhyme in each case. The nursery rhymes were 

spoken by a female native speaker of British English who was articulating in time to a 4 Hz 

(syllable rate) metronome beat. The speaker was instructed to produce the metrical pattern of 

each nursery rhyme as clearly as possible. Utterances were digitally recorded using a 

TASCAM digital recorder (44.1 kHz, 24-bit), and the metronome was not audible in the final 

recording. 

 

Table 2.1. List of nursery rhyme sentences and their metrical rhythm pattern  

 METRICAL RHYTHM 

PATTERN 

(S = Strong, w = weak) 

NURSERY RHYME SENTENCE 

(CAPS = Strong syllable) 

D
u

p
le

 m
et

er
 

S w S w S w S w 

(trochaic) 

"MA-ry MA-ry QUITE con-TRA-ry" 

"SIM-ple SI-mon MET a PIE-man" 

w S w S w S w S 

(iambic) 

"as I was GO-ing TO st IVES" 

"the QUEEN of HEARTS she MADE some TARTS" 

T
ri

p
le

 m
et

er
 

S w w S w w S w w S 

(dactyl) 

"PU-ssy-cat PU-ssy-cat WHERE have you BEEN" 

w S w w S w w S w w S 

(amphibrach) 

"to MAR-ket to MAR-ket to BUY a fat PIG" 
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2.4 EXTRACTING THE AM HIERARCHY 

 

 First, the amplitude envelope was extracted from the wideband speech signal via a 

demodulation procedure - the Hilbert transform. The wideband envelope of speech contains a 

dominant contribution from low frequency components such as voiced sounds, as these carry 

the most acoustic energy. This low-frequency bias is similar to the experience of the foetus 

in-utero (Armitage et al., 1980). Hence, the AMPH uses the most energetically-dominant 

spectral components for rhythm detection, consistent with the acoustic environment of a fetus 

in-utero. Since different rates of modulation in the amplitude envelope pertain to different 

types of linguistic information, the Hilbert envelope was passed through a series of band-pass 

filters in order to isolate these different modulation rates. This 'modulation filterbank' 

approach is illustrated in Figure 2.5. The 'modulation filterbank' (MFB) consisted of a series 

of adjacent finite impulse response (FIR) filters. Appendix 2.1 provides details of the filtering 

parameters used in the AMPH. For a detailed description of the filterbank design and 

features, see Stone & Moore (2003, p.3). The current MFB was adapted from this spectral 

filterbank for use as a modulation filterbank. 

 

Figure 2.5. Extraction of the AM hierarchy from the acoustic signal. This involves passing 

the wholeband amplitude envelope (AE, black line) through a modulation filterbank (MFB). 

Filter frequencies shown here are for illustration only, these were tuned to the individual 

speaking rate. 
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 Inspection of Figure 2.5 reveals that 5 AM tiers were generated by the modulation 

filterbank: (1) Fast; (2) Sub-beat; (3) Syllable; (4) Stress; (5) Slow. Rather than being fixed, 

the filter parameters of each tier in the filterbank were adjusted according to the speaking rate 

for each speech sample. This was accomplished by identifying the speaker's dominant 

'Syllable' rate of speaking, and centering the modulation filterbank around this 'Syllable' rate. 

The Syllable rate for the sample was identified by taking the highest peak in the modulation 

spectrum for that sample, within the 3-7 Hz range. 

 The 'Stress' filter captured modulations that occurred at half to one-third the rate of 

the 'Syllable' rate. In normal conversation, longer prosodic feet than the bi-syllable trochee 

and iamb occur. Hence, if the average normal syllable rate is 5 Hz, the average stress rate 

would be less than half this rate (<2.5 Hz). This is consistent with the average duration of 

inter-stress intervals in English of 493 ms (2.03 Hz), as noted by Dauer (1983). The centering 

procedure ensured that the most behaviourally-relevant modulations were isolated by the 

filterbank. For example, if the speaker's syllable rate dropped to an abnormally slow rate of 2 

Hz, modulations at this rate would be correctly identified as 'Syllable' rather than 'Stress', and 

the parameters of the 'Stress' filter would be lowered accordingly.  

 The 'Sub-beat' filter captured modulations that occurred between 2 to 3 times faster 

than the Syllable rate, corresponding to occasions when more than one syllable was uttered 

per beat
5
. For example, in the English nursery rhyme ‘Humpty Dumpty’, the first 3 syllables 

of the prosodic phrase “sat on the wall” are typically uttered more quickly to fit the beat of 

one regular syllable (i.e. their relative timing is the same as for the single syllable “wall”). 

Since these syllables are 1/3 the duration of “wall”, modulations produced by their utterance 

would be three times faster than the 'Syllable' rate and would appear in the Sub-beat tier.  

 Finally, 'Slow' and 'Fast' filters captured remaining modulations that fell below the 

'Stress' rate and above the 'Sub-beat' rate respectively. Although not explicitly used by the 

AMPH model for rhythm detection, these 'Fast' and 'Slow' modulation rates nevertheless 

contained important information for speech intelligibility. For example, fast modulations in 

the speech envelope up to 50 Hz are thought to contain linguistic cues to phonetic manner of 

articulation, voicing, and vowel identity (Rosen, 1992). At the slowest end of the modulation 

spectrum, Fullgrabe et al (2009) demonstrated that even modulations as slow as <1 Hz could 

                                                 
5
 Therefore both the 'Syllable' and 'Sub-beat' tiers capture syllable sounds. However, Syllable cycles correspond 

to whole beats whereas Sub-beat cycles correspond to divisions of the main beat.  This splitting of syllable-rate 

modulations into two separate tiers explains why there are 5, rather than 4 tiers in the AM hierarchy, as 

originally depicted in Figure 2.2.  
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contribute to speech intelligibility in adverse listening conditions, possibly by conveying 

information about sentence phrasing.  

 These 5 tiers formed the AM hierarchy which was meant to represent the linguistic 

prosodic hierarchy. Only 'Stress' and 'Syllable' AM tiers were given names that corresponded 

to specific linguistic counterparts (the stress foot and the syllable), because these 

correspondences were strongly indicated by the previous literature. Also, since the syllable 

rate was explicitly computed for each sample, there was reasonable confidence that the 

Syllable tier would contain actual syllable-related modulations. Similarly, there was good 

reason to expect that modulation patterns from prosodic stress feet would fall into the Stress 

tier, since these modulations would be at integer dividends of the Syllable rate. By contrast,  

the other AM tiers were given more generic rate-related names (e.g. 'Fast' or 'Slow') because 

there was no guarantee that they would actually contain, for example, phoneme-related or 

phrase/sentence-related modulations. Since only Stress and Syllable tiers were used for 

rhythm computation in the AMPH model, the linguistic content in these other AM tiers was 

not explored further in this thesis. 
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2.5 EXTRACTING RHYTHM INFORMATION FROM PHASE 

RELATIONSHIPS  

 

 Three features emerge from the AM hierarchy that would appear to be useful for 

rhythm perception. First, recall that each cycle of modulation in the Stress and Syllable tiers 

can be associated with a distinct linguistic unit. For example, one modulation cycle in the 

'Syllable' AM tier in Figure 2.3 typically corresponds to a single articulated syllable. 

Similarly, one modulation cycle in the 'Stress' AM tier should correspond to a prosodic foot. 

By analogy to music, syllables in a metrical foot are like musical beats in a bar. AM cycles 

may provide the perceptual cues that induce a percept of rhythmic beats and bars.  

 Secondly, as illustrated in Figure 2.3 earlier, the AM tiers form nested sets, or a 

'nested hierarchy'. That is, one modulation cycle at a higher level of the hierarchy 

encompasses a set of several cycles at the next lower level of the hierarchy. This type of 

nesting is also a feature of recent neural oscillatory models of speech perception (e.g. Ghitza, 

2011). Conceptually, nesting is exemplified by Russian Matryoshka dolls, where each inner 

doll is enclosed by a slightly larger doll on the outside, which is itself enclosed by an even 

larger doll on its outside, all the way to the outermost doll, forming a nested physical 

hierarchy of layers. By analogy, AM tiers form a nested temporal hierarchy. Slower cycles 

that are temporally higher up in the AM hierarchy span sets of faster AM cycles at a lower 

level of the hierarchy. Of course, the analogy is not perfect, since in Matryoshka dolls the set 

at each level or layer only contains one object (doll).  In contrast, in the AM hierarchy, each 

set (= slower AM cycle) may contain multiple faster modulation cycles. For example, one 

'Stress' cycle may span two, three or even four 'Syllable' cycles. In metrical poems where 

'Stress' and 'Syllable' AMs are temporally phase-locked (i.e. their phase relationship is fixed 

by poetic meter), Syllable modulation cycles form stable ordered sets within each Stress 

cycle. These ordered modulation sets may underlie human perception of a regular poetic 

meter.  

 Finally, phase relationships within the AM hierarchy provide 'new' information for 

encoding temporal patterns. For example, if the Syllable AM was extracted from the 

hierarchy and used to modulate a sine tone carrier, and this modulation pattern was presented 

to a listener either immediately or after a delay of 100ms, the relative timing of the pattern of 

beats heard by the listener would be exactly the same on both occasions. However, if the 

Syllable AM was instead presented together with the Stress AM, and the Syllable AM was 
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now played either simultaneously or with a 100ms delay with respect to the Stress AM, the 

listener would notice a difference when the onset of the Syllable AM was delayed. Even 

though the component Stress and Syllable AM tiers would be identical in each case, the 

change in phase alignment between the two AM tiers would yield new temporal information, 

in the form of a different interference or summation pattern. Consequently, when syllable 

patterns are presented as part of a temporal hierarchy rather than in isolation, the auditory 

system is provided with additional information about the phase relationships between tiers in 

the hierarchy, over and above the information contained within each tier. This new phase 

information may be exploited to provide cues about rhythmic patterning, temporal order or 

sequence. For example, common metrical foot motifs differ in their cyclical ordering of 

strong and weak syllables. The amphibrach motif ('w-S-w') is obtained by shifting the initial 

strong syllable in the dactyl ('S-w-w')  down by one position. Accordingly, cyclical phase 

relationships between Stress and Syllable tiers of the AM hierarchy could provide 

information about underlying metrical foot patterns.   

 In the following two sections, these proposed relationships between features of the 

AM hierarchy and metrical rhythm information are instantiated as computational schemes. In 

Section (2.5.1), a description is provided of how rhythmic meter may be inferred from the 

n:m mode of phase-locking between Stress and Syllable phase series. In Section 2.5.2, a 

'Stress Phase Code' for computing syllable prominence, and by extension, metrical rhythm 

pattern is described.  

 

2.5.1 INFERRING RHYTHMIC METER FROM N:M  PHASE-LOCKING RATIO 

 

 If an oscillatory wave (such as a filtered AM) is thought of as alternately cycling 

between peak and trough states, its state at any given instant may be described in terms of the 

phase of a sinusoidal cycle, varying from -π to π radians. In this thesis, an angular phase 

value of 0π radians marks the peak of the wave, while a phase of -π radians or π radians 

marks a trough (i.e. 'cosine' phase). The phase values of -π and π radians are equivalent 

because, by analogy to a circle, the starting and ending points after traversing a full cycle are 

the same. If one considers a wave that is oscillating in time, the phase of the wave at any 

point in time is a simple function of its starting phase, its frequency, and the time elapsed. If 

one now considers two such oscillating waves with the same frequency, the phase difference 

between the two waves at any point in time is constant, given by the difference in their initial 
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starting phases (since frequency and time elapsed are the same for both waves). For example, 

if they started at the same phase, they will always have the same phase at every future point 

in time - they are in phase. If one started with a peak (0 radians) while the other started with a 

trough (-π radians), they will always be π radians out of phase at every future point in time.   

 However, the situation becomes more complex when one considers the phase 

difference, or phase relationship between two waves that do not have the same frequency, as 

is the case for the Stress AM and Syllable AM. Although one can conceptualize phase-

coupling or phase-locking between the two waves, this would have to be described in terms 

of angular ratios. In this case, one could no longer describe the two waves as being either in- 

or out-of phase. Rather, their instantaneous phase relationship would itself change over time, 

but in a predictable fashion. Mathematically, the phase relationship between two coupled 

oscillators at different frequencies can be expressed in a general formula for n:m phase-

locking (Tass et al, 1998; Rosemblum et al, 2001). If Ф1(t) and Ф2(t) represent the phase 

series of each oscillator respectively, for a unique value of n and m (where both are integers) 

the circular phase difference between the two series is the sum of a constant value a  (where   

-π < a < π) and a noise component, δ. This is summarised in equation (1) :  

 

n Ф1(t) - m Ф2 (t) =  a + δ (Eq. 1) 

 

 For example, Figure 2.6a shows two pure sine waves, where the slower wave is either 

half (left-hand column) or a third (right-hand column) the frequency of the other. In the 

middle and bottom row of the figure, the circular phase difference between the two waves is 

displayed where 'n = 1, m = 2' (middle row) or 'n = 1, m = 3' (bottom row). When the value of 

'm' correctly reflects the frequency ratio between the two waves, their circular phase 

difference is approximately constant. When 'm' does not reflect the frequency ratio between 

the waves, their circular phase difference is not constant, and itself performs a periodic 

rotation. Hence, the constant-value n:m phase-locking solution reflects the frequency 

relationship between the two waves. Since this ratio may also be interpreted as the number of 

cycles at the faster rate that are required to form perfectly nested sets within the slower rate, 

the n:m ratio also denotes the rhythmic meter of the sequence. 
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Figure 2.6. Examples of n:m phase locking with (a) pure sine waves and (b) metrical nursery 

rhyme sentences. 

(a) Pure sine waves with a frequency ratio of 1:2 (top, left) or 1:3 (top, right). The circular phase 

difference between the two waves is plotted when m = 2 (middle) and m = 3 (bottom).  

 

(b) Duple and triple-metered nursery rhymes "Mary Mary" (left, duple) and "Pussycat Pussycat" 

(right, triple). In the top row, the waveform for each sentence is shown with Stress AM phase (bold) 

and Syllable AM phase (dotted) overlaid (phase plotted as cosine function). The circular phase 

difference between Stress and Syllable AMs is shown when m = 2 (middle) and m = 3 (bottom). 
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 Having illustrated the principle of n:m phase-locking with periodic sine waves, this 

principle is now applied to the Stress-Syllable AM phase hierarchy to see if speech produced 

metrically does indeed contain such phase-locked 'nested sets'. In metrical poetry such as 

nursery rhymes, the pattern of stresses and syllables is highly regular. Consequently, it is 

expected that the 'Stress' and 'Syllable' AM phase series extracted from the spoken nursery 

rhymes should be phase-locked in the same way as the sine waves in the previous example. 

For example, in the children's nursery rhyme "MA-ry MA-ry QUITE con-TRA-ry" (shown in 

Figure 2.6b, left panels), every alternate syllable is stressed regularly. Since there are four 

stresses across eight syllables, the 'Stress' AM (bold line) is half the rate of the 'Syllable' AM 

(dotted line). These stresses occur at regular intervals with respect to the syllables, hence 

'Stress' and 'Syllable' AMs maintain a predictable phase relationship throughout the sequence. 

Accordingly, their phase difference should also form a perfectly predictable pattern. 

 One would therefore expect the Stress-Syllable phase series to display n:m phase-

locking of an order that reflects the rhythmic meter of the poem (i.e. 1:2 or duple).  In 

contrast, for "PU-ssy-cat PU-ssy-cat WHERE have you BEEN" (Figure 2.6b, right panels), 

every third syllable is stressed. One would therefore expect the n:m phase-locking ratio for 

this sentence to be 1:3, reflecting a triple meter. The Stress-Syllable phase series for the two 

sentences are shown for n:m modes of 1:2 (middle panels) and 1:3 (bottom panels). For the 

sentence "Mary Mary" (left), Figure 2.6b shows that when n:m is 1:2 (left middle panel), the 

phase difference between Stress and Syllable AMs varies about a constant value. When n:m  

is 1:3, the phase difference becomes a periodic rotation. In contrast, the sentence "Pussycat 

Pussycat" (right middle panel) shows the opposite pattern. Now an n:m of 1:2 is periodic but 

1:3 approximates a steady value (with noise). As such, one may conclude that the appropriate 

n:m phase-locking mode for "Mary Mary" is 1:2 but for "Pussycat Pussycat" it is 1:3. In fact, 

this phase-locking mode correctly reflects the actual rhythmic meter of each sentence. Hence, 

the n:m mode of AM phase-locking could potentially be used to compute rhythmic meter in 

hierarchically-phase-locked systems such as metrical poems and classical music.  
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2.5.2  COMPUTING SYLLABLE PROMINENCE USING THE STRESS PHASE CODE 

 

 So far, it has been demonstrated that poetic meter can be inferred from integer ratio 

descriptors of the long-term phase-locked relationship between Stress AMs and Syllable 

AMs within the AM hierarchy. Now, it is proposed that local (momentary) phase 

relationships between Stress and Syllable AMs constitute a 'Phase Code' for relative syllable 

prominence. By using the Phase Code to compute the prominence of each individual syllable 

within a sequence, the 'Strong-weak' metrical patterning of the entire sequence can be 

revealed. 

 

2.5.2.1  Why Use Phase to Compute Prominence? 

 The local phase at any given point of an AM describes the energy at that point, 

relative to the points before and after it. Unlike amplitude or loudness, which are absolute 

values, phase is an entirely relative property. For example, Figure 2.7 shows an example of 

two AM signals, Signal A and Signal B. As shown in the top panel, the two signals differ in 

terms of their absolute power or amplitude (B is louder than A), and in their modulation 

depth (B is more deeply modulated and A). Imagine that for each signal, we want to describe 

the amplitude of the red point, relative to the amplitude of the blue point before it and the 

green point after it. From visual observation of the two signals, this is appears to be easy - the 

red point is lower in amplitude as compared to the blue point, but higher in amplitude as 

compared to the green point. In fact, for both Signals A and B, the red point occupies the 

same relative amplitude, being vertically exactly halfway between the blue and green points. 

Therefore, if the three points corresponded to the loudness (amplitude) of 3 different 

syllables, one would infer that the relative loudness of the middle syllable was the same in 

both Signals A and B.  

 While this conclusion is apparent from visual inspection, it does not emerge naturally 

when one considers the actual amplitude values of the points in question. For Signal A, the 3 

points have amplitudes of 3,2 and 1 respectively. However, for Signal B, the 3 points have 

amplitudes of 5, 0 and -5 respectively. Therefore the absolute amplitudes of the two middle 

(red) points for Signals A and B are not equivalent (2 vs 0). How then does one show that the 

two red points in Signals A and B actually have the same relative amplitude? This is 

achieved by comparing the amplitude difference between the red and blue points, relative to 
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the amplitude difference between the red and green points, or in other words, performing a 

local 'normalisation' of the two amplitude differences before and after the point in question.  

 

Figure 2.7. Illustration of how phase captures relative amplitude for given points in a signal. 

Signals A (left) and B (right) are shown in the top panel. Their respective oscillatory phase 

values are shown in the bottom panel. 

 

 In essence, this is what computing the oscillatory phase achieves. As shown in the 

bottom panel of Figure 2.7, the oscillatory phase angle of the two red points in Signals A and 

B (shown in corresponding red points on the phase plot) is exactly the same, as are the phase 

angles of the two blue and green points. In fact, the phase analysis reveals that the relative 

pattern of Signals A and B are exactly equivalent - after normalising for their differences in 

absolute amplitude. This ability to determine relative amplitude is very useful when 

determining the prosodic prominence of spoken syllables. Speakers vary greatly in the way 

that they produce stressed and unstressed syllables. Sometimes, the unstressed syllables in 

one portion of speech may have an even larger (absolute) amplitude than stressed syllables in 

another portion of speech. If one were to use an absolute amplitude threshold to determine 

syllable prominence (stress), this would lead to many incorrect assignments of syllable 

prominence. Rather, syllable prominence is a relative property, as noted by Liberman & 

Prince (1977). This makes 'phase', a descriptor of relative energy, a particularly suitable 
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index for syllable prominence. Consequently, in the Stress Phase Code, oscillatory phase 

(rather than the absolute amplitude) is used to compute syllable prominence. 

 

2.5.2.2  The Stress Phase Code  

 The Stress Phase Code is a computational scheme that converts continuous Stress and 

Syllable AM patterns into discrete Strong-weak syllable patterns. This is done by (1) 

'sampling' the Syllable AM at key points (peaks) to locate individual syllables; and (2) using 

the concurrent Stress phase at these Syllable peaks to determine syllable prominence.  

 

(1) 'Sampling' the Syllable AM at Peaks 

 In the AM hierarchy, cycles of the Syllable AM represent individual syllables. To 

locate where the individual syllables are, only a single point is needed from each AM cycle. 

For convenience, this point was chosen as the peak of the AM cycle. Therefore, the 

continuous Syllable AM was 'sampled' at its peaks to determine the location of individual 

syllables. These peaks were identified by finding the 0 radian upward-crossing points within 

the Syllable phase series.  

 

(2) Using Stress Phase to Determine Syllable Prominence 

 In the AM hierarchy, tiers are hierarchically-nested such that lower tiers are 

'modulated' in amplitude by higher tiers. Consequently, the amplitude (or loudness) of a 

Syllable AM cycle will depend on the modulation that is imposed by the higher-order Stress 

AM cycle that it is nested under. If the imposed Stress modulation is greater, it follows that 

the Syllable receiving this modulation will also be louder and more prominent. Conversely, if 

the imposed Stress modulation is smaller, it follows that the Syllable receiving this 

modulation will also be softer and less prominent. 

 As discussed in the previous section, phase is a better relative measure for 

prominence than absolute power or amplitude. Therefore, instead of using the absolute 

value/amplitude of the Stress modulator to determine the prosodic prominence of the syllable 

receiving this modulation, the phase of the Stress modulator is used instead. According to this 

scheme, when the Stress AM is at a peak (0π radians phase), syllables occurring at this peak 

phase will receive more modulation and therefore be more prominent. Conversely when the 
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Stress AM is at a trough (-π/π radians phase), syllables occurring at this trough phase will 

receive less modulation and be less prominent.  

 Therefore, the relative prominence of syllables can be expressed in terms of the 

concurrent oscillatory phase of the Stress AM, as shown in Figure 2.8. For each syllable peak 

that is identified, its concurrent Stress AM phase is noted. This Stress phase value is then 

converted into an index of prosodic strength via a normal probability density function (PDF) 

curve, as shown in Figure 2.8. The normal PDF was intentionally chosen because its shape is 

similar to that of the actual oscillatory shape over the same phase values (shown in the dotted 

line in Figure 2.8). The shape of the normal PDF assumes that syllables which occur at the 

peak of the Stress AM would be perceived as strong (stressed). Accordingly, these syllables 

are assigned the maximum prominence value of 1. By contrast, syllables which occur at the 

trough of the Stress AM are likely to be perceived as weak (unstressed). Accordingly, these 

syllables are assigned the minimum prominence value of 0. Therefore, using this phase-to-

prominence conversion scheme, Stress phase 'codes for' syllable prominence. 

 

Figure 2.8.  Illustration of the oscillation phase convention used in this paper (dotted line). 

Solid line indicates the assigned syllable strength (y-axis) under the Stress Phase Code.  
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 The final output of this computational scheme is a discrete series of syllables, each 

assigned with a numerical strength or prominence value. Examples of this discrete output are 

shown in Figure 2.9, where 4 nursery rhyme sentences with different metrical patterns were 

processed using the Stress Phase Code computational scheme. These were the English 

nursery rhymes ‘Mary Mary quite contrary’, ‘As I was going to St Ives’, ‘Pussy cat pussy 

cat’ and ‘To market to market’. Their strong-weak patterning would be "MA-ry MA-ry 

QUITE con-TRA-ry", "as I was GO-ing TO st IVES", "PU-ssy-cat PU-ssy-cat WHERE have 

you BEEN" and "to MAR-ket to MAR-ket to BUY a fat PIG", where capitalised syllables 

representing stressed syllables. The series of panels on the left of Figure 2.9 depict the 

original Stress and Syllable AM tiers of the four nursery rhymes, overlaid on the sound 

pressure waveform for each sentence. The series of panels on the right of Figure 2.9 show the 

syllable strengths that were assigned to each syllable based on the Stress Phase Code. 

Inspection of the figure confirms that the assigned syllable strengths conform closely to the 

four original prosodic patterns of each nursery rhyme.  

 

Figure 2.9. Illustration of how the Stress Phase Code may be used to compute syllable 

prominence patterns. The phase of Stress (bold) and Syllable (dotted) AMs for each nursery 

rhyme sentence are shown on the left (plotted as cosine function for visualisation). Resulting 

detected syllable beats and their assigned prosodic strength is shown on the right.  
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 It is worth emphasising that the methods of syllable detection and prosodic strength 

assignment used by the AMPH model are developmentally plausible, because no prior 

manual segmentation or labelling of the waveform is required. Syllable peaks are detected as 

'0' radian upward-crossing points within the Syllable phase series, and these are labelled with 

prosodic strength according to the corresponding Stress phase. Furthermore, using Stress 

phase as a marker for syllable prominence (rather than sound intensity or duration) means 

that the method is robust to local fluctuations in loudness and rate of speaking. 

 

2.6 COMBINING METER AND PROSODIC PATTERN INTO 

SEGMENTATION SCHEMES 

 

 The final step of the AM Phase Hierarchy model is to group or segment the sequence 

of strong and weak syllables (resulting from the Stress Phase Code computational scheme) 

into prosodic feet according to the rhythmic meter that was inferred earlier from the n:m 

phase-locking mode. This is not a trivial problem. Without knowledge of the lexical content 

of the sentence, the eight syllable beats in "MA-ry MA-ry QUITE con-TRA-ry" may be 

segmented into pairs beginning at the first syllable as "MAry / MAry / QUITEcon / TRAry", 

or at the second syllable as  "MA / ryMA / ryQUITE / conTRA / ry". This word segmentation 

problem is reminiscent of that faced by infants (see Jusczyk et al, 1999). Jusczyk et al. 

showed that 7.5-month-old infants made segmentation errors when they were presented with 

English sentences containing words that did not follow the characteristic trochaic pattern (e.g. 

"Her guitar is too fancy"). Infants mis-segmented the nonword "TA-ris" on the basis of 

strong-weak syllable stress (rather than hearing "gui-TAR", which is weak-strong). Older 

infants no longer made this mis-segmentation. Infant data such as these imply that the 

temporal modulation structure of speech affords several possible segmentation schemes.  

 The AMPH model reaches the same dilemma when oscillatory cycles of the prosodic 

Stress AM are used to provide segmentation markers. Oscillatory cycles may begin at any 

phase value, so long as they traverse a full cycle. Therefore, Stress AM cycles may be 

defined in multiple ways on the basis of different starting phase values. To illustrate this, the 

AMPH model generated two alternative segmentation solutions for the nursery rhymes 'Mary 

Mary quite contrary' and 'As I was going to St Ives'. These segmentation solutions were 

defined based on a starting Stress phase of either -π/2 or π/2 radians. These values were 
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chosen because they are maximally spaced (π radians apart) on the oscillatory phase cycle, 

and occur just before an oscillatory peak (0 radian) or trough (π radians). Since Stress 

oscillatory peaks and troughs often coincided with the vowel nuclei of syllables, by 

beginning the oscillatory segmentation cycle just before the peak/trough, syllable onsets 

could be included within the same segmentation cycle as their vowel nuclei.  

 As can be seen in Figure 2.10, using these two starting Stress phase values resulted in 

segmentation solutions that corresponded closely to trochaic and iambic rhythm patterns 

respectively. In both cases considered in Figure 2.10, an onset of -π/2 radians resulted in a 

trochaic (S-w) pattern, whereas an onset of π/2 radians resulted in an iambic (w-S) pattern. If 

one considers this finding in the light of the empirical data from Jusczyk et al. (1999), this 

may imply that English-learning infants initially default to a segmentation scheme with a 

single onset phase (e.g. -π/2 radians), thereby segmenting trochaic words from the speech 

stream (see Cutler & Carter, 1987). Other oscillatory phase onsets may be used by English-

learning infants only later in development, following longer experience with their native 

language (e.g. using π/2 radians to perform iambic segmentation). 

 

Figure 2.10. Alternative segmentation solutions for "Mary Mary" and "St Ives" using a Stress 

AM starting phase of +pi/2 or -pi/2.  Note that there appear to be extra syllables at the end of 

the sentence "St Ives". These correspond to very small modulations associated with the final 

"s" that nevertheless contain phase information. These non-syllable modulations are 

addressed in the new S-AMPH model (Part III). 
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2.7 CHAPTER SUMMARY  

 

 The AM Phase Hierarchy model offers a signal-based method for calculating the 

prosodic and rhythmic information conveyed by any speaker from the amplitude modulation 

structure of their speech. According to the AMPH model, metrical rhythm patterns are 

detected by breaking down (demodulating) the speech signal into theoretically-defined 

component modulation rates, based on the linguistic prosodic hierarchy. This generates a 5-

tier AM hierarchy where each AM tier corresponds to a different prosodic level. Within this 

AM hierarchy, the Stress and Syllable AM tiers are especially rich in rhythm information. 

For example, the long-term n:m phase-locking ratio between these two tiers can be used to 

infer rhythmic meter. Furthermore, the discrete sequence of Strong and weak syllables in an 

utterance can be computed using a Stress Phase Code. This uses the instantaneous Stress-

Syllable phase relationship (the Stress AM phase concurrent with Syllable AM peaks) as an 

index of syllable prominence. Finally, these two types of information (meter and Strong-

weak syllable sequence) can be combined into rhythmic segmentation schemes. 

 Having described the theory and mechanisms underlying the AM Phase Hierarchy 

model, the next step is to conduct an empirical test, to see whether the AM tiers and phase 

relations specified in the model do indeed form the basis of listeners’ perception of metrical 

rhythm patterns in speech. In the next Chapter, a tone-vocoding experiment is conducted to 

test the two main tenets of the AMPH model - the importance of Stress and Syllable AM 

rates for rhythm, and the importance of the relative phase between Stress and Syllable AMs 

for determining syllable prominence. 
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3   TESTING THE ASSUMPTIONS OF THE AMPH 

MODEL : A TONE-VOCODER EXPERIMENT 
 

 Recall from the Introduction to Part II that two major research questions were initially 

posed. These questions were :  

(1) Where is speech rhythm information located in the modulation spectrum of the envelope? 

(2) How is speech rhythm information 'coded' within amplitude modulation patterns in the 

envelope?  

 The answers to these questions formed two basic tenets of the AMPH model, as 

described in the previous Chapter. Here, the psychological validity of these tenets (with 

respect to human listeners) is tested in a tone-vocoder experiment.  

 

(1) Speech rhythm information is primarily carried by Stress- and Syllable-rate AMs 

within the speech envelope 

 The AM Phase Hierarchy model assumes that Stress and Syllable AMs together 

contain sufficient information to specify metrical rhythm patterns in speech. To test this 

assumption, 5-tier AM hierarchies were extracted from nursery rhyme sentences with 

different metrical patterns. These AM patterns were made audible through tone-vocoding, 

and played back to listeners either as single AM tiers or as pairs of AM tiers. In each case, 

participants were asked to identify the original nursery rhyme based on the rhythm pattern 

that they heard. It was predicted that Stress+Syllable AMs would contain more metrical 

rhythm information than the other AM tiers or their combinations, and hence result in the 

best metrical rhythm identification when presented together.  

 

(2) Speech rhythm patterns are 'coded' via the phase relationship between Stress and 

Syllable AMs 

 Another central tenet of the AMPH model is that syllable prominence is specified by 

the local phase relationship between the Stress AM and the Syllable AM. Since the Stress 

Phase Code assigns syllable prominence circularly by phase, this predicts that incremental 

phase displacements of the Stress-Syllable AM relationship should cause circular 
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perturbations in the perceived syllable prominence
6
. Accordingly, phase-shifts in the Stress-

Syllable AM relationship of up to 1π radians (half a cycle) should move participants' 

perception of a given syllable toward the opposite prominence (e.g. from strong to weak), but 

larger shifts of up to 2 π radians (a full cycle) should bring perception back to the original 

value (e.g. strong).  

 By extension, if a series of syllables contains a regularly alternating strong (S) and 

weak (w) pattern such as 'S-w-S-w-S-w-S-w', a 1π radians phase-shift applied to every 

syllable in the series should result in the opposite pattern of 'w-S-w-S-w-S-w-S'. Conversely, 

a 2π radians phase-shift should elicit no net change in the perceived rhythm pattern. To test 

this prediction, the phase relationship between Stress and Syllable AMs was manipulated by 

parametrically phase-shifting the Stress AM by either 1π radians (turning peaks to troughs) or 

2π radians (keeping peaks as peaks) while holding the syllable AM constant. The 1π phase 

shift should result in incorrect assignment of the prosodic pattern, since peaks and troughs in 

the Stress modulator would be inverted. By contrast, a 2π phase shift would maintain the 

phase-relationship between Stress AM and Syllable AM, allowing correct assignment of the 

prosodic pattern. However, if participants were not using phase, then metrical rhythm 

judgments should be better in the 1π-shift condition than the 2π-shift condition (since larger 

phase-shifts would also introduce more acoustic artefacts).  

 

  

                                                 
6
Consider the analogy of a wheel. Imagine placing the index finger of each hand at the same point on a wheel. 

Now, keeping one finger in its original location, use the other to rotate the wheel clockwise. As the wheel 

rotates, your two fingers become more widely spaced apart until they are diametrically opposite. This point is 

half a rotation cycle. After this point though, any further rotation now brings your two fingers closer together 

until they eventually meet again at the original point. 
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3.1 EXPERIMENTAL METHOD 

 

3.1.1 PARTICIPANTS 

 

 Twenty-three adults (7 male; mean age 26.0 yrs, range 22.0 years - 37.5 years) 

participated in the study. All participants had no diagnosed auditory, language or learning 

difficulties and spoke English as a first language. Twelve participants had had more than 5 

years of musical training while the remaining eleven had less than 5 years or no musical 

training. In an initial analyses of the results, the factor of musical training did not affect 

participants' performance on the tone-vocoder task (i.e. musical training status was not 

significant as a between-groups factor in a repeated measures ANOVA). Therefore, musical 

training is not considered further here. 

 

3.1.2 MATERIALS 

 

 Four duple meter nursery rhyme sentences were used in this vocoder experiment (see 

Table 3.1). Each sentence contained 8 syllables and had a duple metrical rhythm of 

alternating strong (S) and weak (w) syllable beats. Two nursery rhymes started with a strong 

stressed syllable and continued in a 'strong-weak' or trochaic pattern (e.g. "MA-ry MA-ry..." 

and "SIM-ple SI-mon..."). The other two nursery rhymes began with a weak unstressed 

syllable and continued with a 'weak-strong' or iambic pattern (e.g. "as I was GO-ing..." and 

"the QUEEN of HEARTS..."). These two distinctive Rhythm Patterns (RPs) are shown in 

Table 3.1.  

 Each sentence was approximately 2 seconds in length. The nursery rhymes were 

spoken by a female native speaker of British English who was articulating in time to a 4 Hz 

(syllable rate) metronome beat. The speaker was instructed to produce the metrical pattern of 

each nursery rhyme as clearly as possible. Utterances were digitally recorded using a 

TASCAM digital recorder (44.1 kHz, 24-bit), and the metronome was not audible in the final 

recording. 
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Table 3.1. List of nursery rhyme sentences used in the tone vocoder experiment and their 

metrical Rhythm Pattern (RP).  

 METRICAL RHYTHM 

PATTERN 

(S = Strong, w = weak) 

NURSERY RHYME SENTENCE 

(CAPS = Strong syllable) 

D
u

p
le

 m
et

er
 

S w S w S w S w 

(RP 1, trochaic) 

"MA-ry MA-ry QUITE con-TRA-ry" 

"SIM-ple SI-mon MET a PIE-man" 

w S w S w S w S 

(RP 2, iambic) 

"as I was GO-ing TO st IVES" 

"the QUEEN of HEARTS she MADE some TARTS" 

  

 

3.1.3 TASK 

 

 Participants heard four single-channel tone-vocoded nursery rhyme sentences, 

presented one at a time. They were asked to indicate which of the four possible target rhymes 

they thought that they had heard via a button press. Participants were told to base their 

judgment on the rhythm pattern of the stimulus. All participants were first given 20 practice 

trials during which they heard the four nursery rhymes as originally spoken, without 

vocoding. This enabled participants to learn the metrical rhythm pattern of each rhyme, and 

to become familiar with the response button mapping. Subsequently, participants performed 

the task with tone-vocoded stimuli only. The tone-vocoded stimuli retained the temporal 

pattern of each nursery rhyme sentence, but were completely unintelligible. Cartoon icons 

representing the four response options were displayed on the computer screen throughout the 

experiment to help to reduce the memory load of the task. These icons are shown in Figure 

3.1. Auditory stimuli were presented binaurally using Sennheiser HD580 headphones at 

70dB SPL. The experimental task was programmed in Presentation (Neurobehavioural 

Systems) and delivered using a Lenovo ThinkPad Edge laptop.  
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Figure 3.1. Cartoon icons displayed on-screen throughout the experiment to remind 

participants of the four nursery rhyme response options and their respective response 

buttons. The corresponding rhymes are (L to R) : St Ives, Mary Mary, Queen of Hearts and 

Simple Simon. 

 

 

3.1.4   SIGNAL PROCESSING METHODS 

 

 All signal-processing steps were carried out using MATLAB (R2009a, Version 7.8.0, 

The Mathworks Inc). 

 

3.1.4.1  AM Hierarchy Extraction 

 Two different demodulation methods were used to extract the AM hierarchies, 

creating two different but complete sets of vocoded stimuli. The reason for using two 

methods was to ensure that the experimental results obtained were not due to methodological 

artifacts introduced by the demodulation or filtering procedures. For example, artificial 

modulations could be introduced into the stimuli by filter 'ringing'. These spurious 

modulations  would occur at the same frequency as the filter, and be indiscernible from the 

true signal. Consequently, it was important to have a methodological control for any such 

artifacts. The standard method involved using the Hilbert transform to extract the amplitude 

envelope, which was then passed through the modulation filterbank (MFB) to extract the AM 

hierarchy. For this method, the edge frequencies for the 5 tiers of the filterbank were 0.5-0.8 
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Hz  (Slow), 0.8-2.3 Hz (Stress), 2.3-7 Hz (Syllable)
7
, 7-20 Hz (Subbeat) and 20-50 Hz (Fast). 

The choice of these filtering parameters is explained further in Appendix 2.1. 

 The second, control method of AM hierarchy extraction was Probabilistic Amplitude 

Demodulation (PAD; Turner, 2010), and did not involve the Hilbert transform or filtering. As 

described in Chapter 1, Section 1.7.2, PAD extracted the AM hierarchy directly from the 

speech signal using a Bayesian inference-based approach. A description of the PAD 

'demodulation cascade' process which was used to produce the PAD AM hierarchy, and a 

comparison of MFB-derived and PAD-derived modulators is provided in Appendix 3.1. 

 All participants heard both sets of stimuli. It was reasoned that if participants 

produced the same pattern of results with two methods of AM extraction that operate using 

very different sets of principles, these results were likely to be due to real features in speech 

rather than artifacts. 

 

3.1.4.2  Tone Vocoding  

 To make the AMs in the hierarchy audible, each AM tier was used to modulate a 500 

Hz sine-tone carrier (i.e. single channel tone-vocoding). Note that the phonetic fine structure 

of the signal was intentionally discarded, and only AMs derived from the amplitude envelope 

were used to modulate the sine tone carrier. A multi-channel vocoder was not used to ensure 

that the sentences would be completely unintelligible. Since the dependent variable was how 

well participants could identify each sentence from its rhythm pattern alone, all other cues to 

sentence identity were removed. Multi-channel vocoders would have increased the 

intelligibility of the sentences, providing listeners with extra non-rhythm-related cues.  

 To create single-tier AM stimuli (e.g. Stress only), the appropriate AM tier was 

extracted from the hierarchy and combined with the 500 Hz sine-tone carrier. Since PAD 

AMs were entirely positive-valued, these were multiplied directly with the carrier. For MFB 

AMs which had negative-valued portions, a 30ms-ramped pedestal at RMS power was added 

prior to combining with the carrier. To create double-tier AM stimuli (e.g. Stress+Syllable), 

the two AM tiers were first combined via addition (MFB) or multiplication (PAD) before 

combining with the carrier. All stimuli were equalised to 70dB. The resulting tone-vocoded 

                                                 
7
 The syllable rate measured for all nursery rhymes was 4.04 Hz, which confirmed that the speaker conformed 

closely to the metronome rate 
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sentences had clear temporal patterns ranging from Morse-code to flutter, but were otherwise 

completely unintelligible. 

 

3.1.4.3  Phase-Shifting 

 The aim of phase-shifting was to parametrically change the phase-relationship 

between AM tiers to measure whether this also systematically changed the rhythm pattern 

perceived by the listener. Since the sentences were either trochaic or iambic in pattern, the 

aim of the procedure was to make trochaic sentences sound iambic, and vice versa. In a 

modulation hierarchy, the slower AM should impose perceptual constraints on faster AMs 

(e.g. Stress AM phase determines the prosodic prominence of Syllable AM beats). Hence, for 

pairs of AM tiers, phase-shifting involved shifting the slower AM with respect to the faster 

AM, which was held constant. For single AM tiers, phase-shifting was also performed as a 

control, but this was not expected to produce a significant change in participants' judgements.  

 Due to the use of the metronome, the nursery rhyme sentences were perfectly regular 

in metrical structure, therefore their AMs were also highly regular in their temporal pattern of 

peaks (P) and troughs (t), resembling a pure sinusoid. Thus, phase-shifting was implemented 

by shuffling sections of the signal from the start to the end. For example, for a nursery rhyme 

with an AM pattern of  'P-t-P-t-P-t-P-t', shuffling the first peak (P) from start to end would 

result in a pattern of 't-P-t-P-t-P-t-P', the same result as if each element was individually 

phase-shifted by 1π radians.  

 Phase-shifting via shuffling was a superior method to deletion or silence insertion 

(delay) because it allowed all the original information within each sentence to be retained, 

changing only its temporal order. The length of phase-shifted stimuli could also be kept the 

same as non-phase-shifted stimuli by this method. For the 2π radians shift, the sample length 

shuffled was a full period cycle corresponding to a representative single frequency within the 

bandwidth of the AM tier in question. The representative Syllable frequency was determined 

by finding the peak RMS power in the 3-7 Hz range of the modulation spectrum for each 

sample. This turned out to be 4.04 Hz, which was very close to the metronome pacing beat of 

4.0 Hz. The representative Sub-beat frequency was determined by taking the mean of 2 and 3 

times the Syllable frequency (10.1 Hz), to allow for both duple and triple patterns in this tier. 

For consistency, the representative Stress frequency was also determined by taking the mean 

of half and a third of the Syllable frequency (1.68 Hz). This resulted in cycle lengths of 595 
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ms for the Stress tier (1.68 Hz), 248 ms for the Syllable tier (4.04 Hz), and 99 ms for the Sub-

beat tier (10.1 Hz) that were used for shuffling. For a 1π radians shift, the length shuffled was 

half of that used for the 2π radians shift.  

 For all stimuli (phase-shifted and non-phase-shifted), a 50ms ramp was applied to the 

start and end of the AMs to make the phase-shift boundary less abrupt. Stimuli were 

manually checked to verify that the shuffling process produced the desired phase changes for 

all stimuli. Even though some minor sound artifacts were introduced as a result of the 

shuffling process (e.g. at phase-shift boundaries), the resulting metrical patterns emerged as 

predicted, e.g. trochaic (no shift) ==> iambic (1π  shift) ==> trochaic (2π shift). This is 

illustrated in Figure 3.2.  

 

Figure 3.2. Illustration of the effect of phase-shifting on the metrical pattern of 'Mary Mary'. 

(Top row) Tone-vocoded MFB stimuli used in the experiment. (Middle row): Corresponding 

Stress (bold) and Syllable (dotted) AM phase patterns. Phase values are projected onto a 

cosine function for visualisation purposes. Only Stress AMs were phase-shifted while Syllable 

AMs were held constant. (Bottom row) Decoded prosodic pattern of syllables. Strong 

syllables ('S') have a prominence value of  >0.5, weak syllables ('w') have a prominence 

value of <0.5. 
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 It is important to note that the overall modulation shapes of the non-shifted and 2π-

shifted stimuli were substantially different. However, both stimuli had the same metrical 

pattern according to the Stress Phase Code, as shown in the bottom panel of Figure 3.2. 

Hence, if listeners judged both stimuli as having the same metrical pattern, this would not be 

due to perceptual similarity or familiarity, but because the key metrical statistics (phase 

relationships) were similar. 

 

3.1.5 DESIGN 

 

 The experiment followed an AM tier (5) x Phase Shift (3) x Demodulation Method 

(2) design. Five different AM tiers or tier combinations were used for vocoding
8
. These were: 

(1) Stress only; (2) Syllable only; (3) Sub-beat only; (4) Stress+Syllable; (5) Syllable+Sub-

beat. Each of these AM combinations was presented in three phase shift conditions : (1) No 

phase shift; (2) 1π radians phase-shift; and (3) 2π radians phase-shift.  

 Fewer phase-shifted stimuli (1π radians or 2π radians) were presented than non-

phase-shifted versions to allow participants to maintain a strong representation of the correct 

metrical pattern for each nursery rhyme. Thus, participants heard the normative (non-shifted) 

version five times for each nursery rhyme, but they only heard each of the phase-shifted 

variants (1π radians or 2π radians) twice.   

 Phase-shifted and non-shifted stimuli were presented within the same experimental 

block in a randomised fashion. Stimuli that were vocoded using MFB-produced AMs and 

PAD-produced AMs were presented in separate experimental blocks, giving a total of 360 

trials for the entire experiment (5 AM tier combinations x 9 phase variants [5 x 0π radians, 2 

x 1π radians, 2 x 2π radians] x 4 nursery rhymes per block x 2 demodulation methods).  

 

  

                                                 
8
 The full range of AM rates was used in a pilot study, including Slow and Fast AMs. It was found that 

participants were at chance for the Slow AM tier, and performed equally well for both Sub-beat and Fast AM 

tiers. Based on these results, the current subset of Stress, Syllable and Sub-beat AM tiers was chosen to reduce 

the number of conditions needed in the experiment.   
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3.2 RESULTS 

 

 Performance was scored in terms of whether participants identified each nursery 

rhyme correctly (the accuracy score) and also whether they identified the correct rhythm 

pattern (RP score, trochaic or iambic; recall that 2 nursery rhymes exemplified each RP). AM 

combinations that provide strong metrical rhythm information should boost both accuracy 

and RP identification. Furthermore, if the AM combination was providing metrical rhythm 

pattern information, participants should be more likely to confuse sentences with the same 

RP than to confuse sentences with different RPs. Hence, the hallmarks of an AM tier 

combination providing strong metrical rhythm information would be a high RP score and a 

high ratio of same:different RP confusions. Table 3.2 provides a summary of mean scores for 

all conditions. For the Accuracy scores, the level of chance performance was 25% (1 out of 4 

nursery rhyme choices). For RP scores, the level of chance performance was 50% (1 out of 2 

RPs). 

Table 3.2. Accuracy scores and RP scores for AM combinations and phase shift conditions. 

Means shown are averages across PAD and MFB methods. 

Phase Shift  

Accuracy Scores (%) RP Scores (%) 

0 rad
 

1π rad
 

2π rad
 

0 rad
 

1π rad
 

2π rad
 

A
M

 t
ie

r 
co

m
b

in
a

ti
o
n

 

 Stress 

 (SE) 

31.4 

(1.8) 

20.7 

(2.3) 

27.9 

(2.9) 

63.8 

(2.4) 

43.2 

(3.2) 

54.5 

(3.0) 

 Syllable 

 (SE) 

34.3 

(1.9) 

29.6 

(2.4) 

26.6 

(2.9) 

62.9 

(2.6) 

54.3 

(2.6) 

50.7 

(3.4) 

 Sub-beat 

 (SE) 

29.9 

(1.4) 

29.6 

(2.9) 

22.0 

(2.0) 

56.7 

(2.3) 

58.0 

(2.8) 

46.5 

(2.5) 

 Stress + Syllable 

 (SE) 

41.4 

(1.8) 

22.0 

(2.5) 

38.9 

(2.9) 

71.1 

(3.0) 

42.4 

(2.9) 

67.1 

(2.8) 

 Syllable + Sub-beat 

 (SE) 

35.9 

(2.1) 

29.3 

(2.8) 

29.1 

(2.5) 

62.5 

(2.7) 

53.3 

(3.2) 

54.1 

(2.3) 
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3.2.1 THE NO PHASE SHIFT STIMULI 

 

3.2.1.1 Accuracy and RP Scores 

 Accuracy and RP scores for the five AM tier combinations that were not phase-

shifted (0π radians) are shown in Figure 3.3, broken down by demodulation method (PAD or 

MFB). Participants' accuracy in identifying the correct sentence ranged between 28%-42%, 

while their RP identification ranged between 55%-70%. These low scores were not surprising 

given that the sentences were completely unintelligible. To test performance against chance, 

one-sample t-tests were conducted against the test values of 0.25 (accuracy) or 0.5 (RP) for 

each AM combination and method. Since a total of twenty t-tests were conducted, a 

Bonferroni-corrected significance value of p<.0025 (.05/20) was used. Inspection of Figure 

3.3 shows that across conditions, participants always performed above chance when hearing 

Stress AMs and Syllable AMs together, but always performed at chance when hearing Sub-

beat AMs only. Combinations containing either Stress AMs or Syllable AMs sometimes 

elicited performance above chance. This indicates that Stress AMs and Syllable AMs 

individually contained some rhythm information, but that participants performed best when 

both these AM tiers were provided together. In contrast, Sub-beat AMs alone did not appear 

to contain sufficient rhythm information for participants to make successful metrical rhythm 

judgments.  

Figure 3.3.  Accuracy and RP scores for the five AM combinations, for each Method (PAD 

and MFB). Error bars indicate the standard error of the mean, and are not suitable for 

inferring statistically-significant differences between repeated measures data. (*) Indicates 

performance above chance. 
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 To compare performance between AM combinations more directly, two 2 x 5 

Repeated Measures ANOVAs were conducted, taking RP or Accuracy scores respectively as 

the dependent variable, and Demodulation Method (2) and AM tier or tier combination (5) as 

within-subjects factors. Scores in all conditions were normally distributed (p >.05 in 

Kolmogorov-Smirnov test of normality). For both RP and Accuracy scores, there was a 

significant main effect of AM combination (RP: F(4,88) = 9.15, p<.0001; Accuracy: F(4,88) 

= 10.53, p<.0001), but no difference between demodulation methods (RP : F(1,22) = 2.27, p 

= .15; Accuracy : F(1,22) = 2.82, p = .11) and no interaction between AM tier x Method (RP 

: F(4,88) = 0.75, p = .56; Accuracy : F(4,88) = 2.03, p = .10). This confirmed that both PAD 

and MFB demodulation methods were producing similar patterns of listening performance. 

 The AM tier main effect was analysed further by performing a Tukey HSD post-hoc 

analysis. For both RP and Accuracy scores, performance with Stress+Syllable AMs was 

significantly superior to all four other AM tiers (RP : p < 0.025 and Accuracy : p < 0.05 for 

all four comparisons). This confirmed that metrical pattern identification for the 

Stress+Syllable AM tier combination was reliably better than for any other AM combination 

tested. Since listeners hearing Stress+Syllable AMs outperformed listeners hearing 

Syllable+Sub-beat AMs, the superior performance with Stress+Syllable AMs could not 

simply be due to a greater modulation bandwidth being presented to listeners (which was 

actually greater for Syllable+Sub-beat AMs). It must have been due to the quality of the 

rhythm information provided by combining this particular pair of AM tiers.  

 Secondly, performance with Stress+Syllable AMs was better than performance with 

either Stress AMs or Syllable AMs alone. This indicated that participants were able to 

combine syllable-rate information with stress-rate information productively, and that the two 

forms of rhythm information were not redundant. In contrast, performance with 

Syllable+Sub-beat AMs was not significantly better than with Syllable AMs alone (p = 0.91 

for Accuracy) indicating that Sub-beat modulations were not providing additional rhythm 

cues over and above those already present in the Syllable AM.  

 Hence, Accuracy and RP scores both indicated that the combination of the 

Stress+Syllable AM tiers provided the most metrical pattern information, consistent with the 

first tenet of the AMPH model. 
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3.2.1.2  Confusion Errors 

 According to the AMPH model, the metrical pattern information provided by the 

combination of Stress+Syllable AMs relates directly to the perceptual impression of strong-

weak (trochaic) and weak-strong (iambic) prosodic patterns. Hence the two RP groups of 

nursery rhymes should be distinguished on the basis of the pattern of local phase 

relationships between the Stress AM and Syllable AM. However, it is also possible that 

participants were relying on other temporal cues such as subtle differences in utterance speed 

or syllable spacing to make their judgments. In this case, performance for Stress+Syllable 

AMs should be unrelated to whether or not participants actually heard metrical rhythm 

patterns.  

 To distinguish between these two competing explanations, the pattern of confusion 

errors produced by participants was analysed. If participants were using RP cues to make 

their judgment, then they should make more confusions between rhythmically-similar rather 

than unrelated nursery rhyme sentences. For example, participants should be more likely to 

confuse 'Mary Mary' with 'Simple Simon'. Conversely, if participants were relying on other 

temporal cues, their errors should be evenly distributed across the different nursery rhymes.  

 To quantify the pattern of confusion errors, a normalised scoring system was used. 

Each nursery rhyme could be confused with one of three other possible nursery rhymes. One 

of these rhymes had the 'Same' rhythm pattern as the target, and the other 2 rhymes had a 

'Different' rhythm pattern. Consequently, participants should be twice as likely to make a 

Different confusion as a Same confusion if they were responding randomly. The observed 

percentage of Different confusions was therefore normalised by a factor of half, and this was 

compared to the full percentage of Same confusions. Since there was no difference between 

demodulation method in terms of accuracy, the errors made for MFB and PAD stimuli were 

pooled and entered into a single 2 x 5 repeated measures ANOVA with Confusion type 

(Same or Different) and AM tier or tier combination (5 levels) as within-subjects factors. 

 The results of the ANOVA indicated that there was a significant main effect of 

Confusion type (F(1,22) = 27.0, p<.0001). Participants made significantly more confusions 

between nursery rhymes with the same rhythm pattern (28.7%) than between nursery rhymes 

with different rhythm patterns (18.3%). There was also a significant main effect of AM tier 

(F(4,88) = 4.02, p <.01). As expected, participants made the fewest errors in the 

Stress+Syllable AM condition. Finally, there was a significant interaction between Confusion 
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type x AM tier (F(2.84,62.5) = 3.71, p < .05, Greenhouse-Geisser epsilon = 0.71). Tukey 

HSD post hoc tests revealed that there were significantly more same than different 

confusions made in all AM tiers or tier combinations except for the Sub-beat band (p = .34). 

These results indicate that participants were indeed performing the task on the basis of RP 

(strong-weak/weak-strong) prosodic information rather than on the basis of speed or spacing 

information. As such, one may infer that the superior performance previously observed for 

the Stress+Syllable AM combination was indeed due to the provision of superior metrical 

rhythm pattern information. 

 

3.2.1.3  Summary of the No Phase Shift Data 

 Participants' performance in the no-phase shift condition clearly indicated that the 

combination of Stress+Syllable AMs elicited the best metrical rhythm judgment. This was 

true whether performance was measured in terms of Accuracy, or in terms of identifying the 

correct Rhythm Pattern. Furthermore, when the pattern of confusion errors was analysed, 

participants were found to confuse sentences with the same rhythm pattern more often than 

they confused sentences with a different rhythm pattern. This confusion pattern was true for 

all AM tier combinations except for the Sub-beat band. This confirmed that participants were 

indeed basing their judgments of sentence identity on the rhythm pattern that they heard. 

Therefore, the results of the no phase shift data are consistent with the first assumption of the 

AMPH model, that Stress and Syllable AMs are the primary carriers of metrical rhythm 

information in the speech envelope.  
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3.2.2   PHASE SHIFT EFFECTS  

 

 As an empirical test of the 'Stress Phase Code' used in the AM Phase Hierarchy 

model, participants also attempted to recognise the tone-vocoded nursery rhymes following 

phase-shifts of 1π radians or 2π radians. Phase-shifts perturbed the phase relationship 

between AM tiers in the stimuli. For AM combinations carrying rhythm information, it was 

predicted that phase-shifts of 1π radians would cause participants to perceive sentences as 

having the opposite rhythm pattern (e.g. trochaic to iambic), while phase-shifts of 2π radians 

would maintain the original rhythm pattern (see Figure 3.2). This would lead to a 'V-shaped' 

pattern of drop and recovery across the three phase-shift conditions (no shift to 1π radians 

shift to 2π radians shift). Meanwhile, for AM tiers that are not carrying metrical information 

(e.g. the Sub-beat tier), phase-shifting should either impair metrical rhythm judgments 

equally for both types of phase-shift, or decrements in judgment should be greater with the 

2π-shift compared to the 1π-shift, as the 2π-shift involves greater signal distortion.   

 

3.2.2.1  Accuracy Scores 

 The effects of phase-shifting on performance accuracy in each AM tier or tier 

combination are shown in Figure 3.4. Inspection of the Figure suggests that the predicted 'V-

shaped' drop in accuracy for a 1π-radians shift and recovery for a 2π-radians shift indeed 

occurred in the Stress+Syllable AM tier combination, and possibly also in the Stress-AM tier. 

To investigate this effect, a 5 (AM tier or tier combination) x 3 (Phase shift, 0π, 1π, 2π 

radians)  x 2 (Demodulation Method: PAD, MFB) repeated measures ANOVA was carried 

out, taking Accuracy of identifying the target nursery rhyme as the dependent variable. An 

interaction between AM tier and phase shift would indicate that a phase-shift effect occurred 

in some AM combinations, but not in others.  

 The ANOVA showed a significant main effect of AM tier (F(4,88) = 5.98, p <.0001), 

and a significant main effect of phase shift (F(2,44) = 11.3, p <.0001), but as previously, no 

significant effect of AM extraction method (F(1,22) = 3.71, p =.067), although this came 

close to significance. The predicted interaction between AM tier and phase shift was 

significant, F(4.93,108.35) = 4.78, p <.0001, Greenhouse-Geisser epsilon = 0.62. A Tukey-

HSD post hoc analysis was used to compare differences between 0 and 1π shifts, and 1π and 

2π shifts respectively for each AM combination. Tukey post-hoc tests showed that significant 

effects were limited to the Stress+Syllable AM tier combination. The phase shift effects in 
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the Stress+Syllable AM tier combination occurred exactly in the direction predicted by the 

AM Phase Hierarchy model, namely a significant drop in accuracy with a 1π-shift, but a 

significant recovery of accuracy with a 2π shift.  

 

Figure 3.4. Effect of phase-shifting on accuracy, scores averaged across PAD and MFB 

methods. 

 
 

 Indeed, there was no significant difference in performance between 0 and 2π-shifted 

Stress+Syllable AM stimuli. This showed that the rhythm information in 2π radians phase-

shifted stimuli was equivalent to that in non-phase-shifted nursery rhymes, despite the 

acoustic distortions introduced by phase-shifting. Recall from Figure 3.2 that the non-shifted 

and 2π-radians shifted stimuli were actually completely different in modulation pattern. 

Therefore, for participants to achieve a statistically-equivalent performance in both 

conditions, they must have been relying on the relative Stress-Syllable phase information - 

which was the only factor that remained unchanged after the phase-shifting.    

 Therefore, the results of the phase-shift conditions indicate that, as predicted, listeners 

were relying on the phase relationship between Stress and Syllable AMs to make rhythm 

pattern judgments. No other AM tier or tier combination showed the predicted phase-

dependent 'V-shaped' response, indicating that rhythm judgment for other AM tier 
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combinations was not phase-dependent. Although the Stress tier by itself also showed the 

predicted 'V-shaped' pattern, this drop and recovery was not statistically-significant, 

suggesting that additional Syllable-rate information was required for phase-coding of rhythm 

to operate in full. 

 

3.2.2.2  Confusion Errors 

 It is also important to examine the pattern of confusion errors produced by phase-

shifting. A different pattern of errors should now be observed, relative to the non-phase-

shifted stimuli, as the perceived rhythm patterns (RPs) should change systematically with the 

degree of phase shift. In particular, if participants were misled by the 1π radians phase-shift 

into perceiving the opposite RP to the actual rhythmic pattern of a given nursery rhyme, they 

should now show more Different RP confusions. For example, "MA-ry MA-ry" originally 

had the same rhythm pattern as "SIM-ple SI-mon". However, the 1π radians stress phase-

shifted version ("ma-RY ma-RY") would now be rhythmically similar to "the QUEEN of 

HEARTS" and "as I was GO-ing...". Hence, if participants were using phase-information for 

rhythm pattern perception, they should now make more Different confusions for the 1π 

radians shifted stimuli, but continue to make more Same confusions for the 2π radians shifted 

stimuli (as these nursery rhymes should sound equivalent to non-phase-shifted nursery 

rhymes).  

 The percentage of Same and Different confusions produced by phase-shifting each 

AM tier is shown in Figure 3.5. Paired t-tests were used to compare the percentage of 

Different confusions made for zero phase shift vs 1π shift, 1π shift vs 2π shift, and zero phase 

shift vs 2π shift for each AM tier. This necessitated 15 comparisons, hence a Bonferroni-

corrected p-value of 0.003 (0.05/15) was used to determine significance. For the 0π-1π shift, 

the only significant differences occurred for the Stress AM tier and the Stress+Syllable AM 

tiers, where significantly more different confusions were made under a 1π radians phase shift 

than under no phase shift (see Figure 3.5). For the 1π-2π shift, there were now significantly 

less different confusions for the Stress+Syllable AM tier, but not for the Stress AM only tier. 

For the 0π-2π shift, there were no significant differences in any AM tier or tier combination. 

Hence, as predicted by the AMPH model, phase-shifting the Stress AM (either alone or in 

combination with the Syllable AM) by 1π radians resulted in participants confusing nursery 

rhymes that had opposite metrical structure (trochaic versus iambic). The proportion of 

different confusions fully returned to baseline with a 2π phase-shift for the Stress+Syllable 
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AM tier, but showed only intermediate recovery for the Stress only AM tier. In contrast, 

phase-shifting Syllable AMs and Sub-beat AMs had no systematic effect on the nature of 

rhythmic confusions.  

 

Figure 3.5. Effect of phase-shifting on percentage of same versus different Rhythm Pattern 

confusion errors, scores averaged across PAD and MFB methods. 

 

 

3.2.2.3  Multi-Dimensional Scaling (MDS) 

 In a final analysis step, participant's response patterns in the 0π, 1π and 2π radians 

phase shift conditions were used as the basis for multi-dimensional scaling (MDS). The aim 

was to represent participants' perception of the rhythmic similarity between nursery rhymes 

as a map in 'perceptual space'. The shape of these maps would indicate whether rhythmic 

perception changed systematically as a function of phase shift. To construct these maps, 4 x 4 

confusion matrices were computed from participants' responses. These confusion matrices 

capture information about how often one sentence is confused for another, providing a rich 

source of information about the structure of participants' psychological representations of the 

stimuli (Shepard, 1972).  
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 Table 3.3 shows an example of a 4 x 4 confusion matrix produced for the 

Stress+Syllable AM tier combination, in the no phase-shift condition. In the table, PAD and 

MFB responses were averaged for simplicity of inspection, but these were computed 

separately in the actual analysis. Table 3.3 shows that participants made more confusions 

within sentences with the same rhythm pattern than across sentences with different rhythm 

patterns. For example, when participants heard the nursery rhyme 'St Ives', they responded 

that they had heard 'St Ives' 36% of the time (correct response). They chose an incorrect 

response with the same rhythm pattern ('Queen of Hearts') a further 32% of the time, but they 

only chose responses with a different rhythm pattern ('Mary Mary') 16% of the time each. 

Confusion matrices were computed for each of the 5 AM tier combinations, 3 phase-shift 

conditions, and 2 AM extraction methods. 

 

Table 3.3. Example of a confusion matrix for Stress+Syllable AMs, in the no phase-shift 

condition. Grand averages over 23 participants are shown 

(Values shown in the table are 

response percentages) 

RESPONSE 

RP 1 RP 2 

Mary Mary 
Simple 

Simon 
St Ives 

Queen of 

Hearts 

S
T

IM
U

L
U

S
  

(S
en

te
n

ce
 p

re
se

n
te

d
) 

R
P

 1
  Mary Mary 62.7% 15.7% 12.7% 8.7% 

 Simple Simon 42.7% 29.1% 13.1% 14.9% 

R
P

 2
  St Ives 16.2% 15.7% 36.2% 32.2% 

 Queen of Hearts 14.0% 20.5% 28.3% 37.5% 

 

bold = correct response 

underline = confusion within same Rhythm Pattern group 

 

 These confusion matrices were then converted into 'psychological' similarity maps 

using multidimensional scaling (MDS). In these maps, the psychological proximity 

(similarity or confusability) between the various nursery rhyme sentences was represented in 
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terms of the spatial proximity (distance) between points in 2-dimensional
9
 space, where each 

point represents one nursery rhyme sentence. Sentences that are more similar are mapped 

closer together, whilst sentences that are more dissimilar are mapped further apart. The MDS 

maps obtained for the Stress+Syllable AM tier combination and the Sub-beat AM tier across 

the three possible phase-shifts (0, 1π radians, 2π radians) are shown in Figure 3.6. These two 

AM tiers were selected for display because the data so far indicate phase-shift effects for the 

Stress+Syllable AM tier combinations but not for the Sub-beat AM tier alone. In Figure 3.6, 

sentences with the same rhythm pattern are joined with a black line.  

 

Figure 3.6. MDS maps for the three phase-shift conditions (columns), for Stress+Syllable 

AMs (top row) and Subbeat AMs (bottom row). Since only the distance between points is 

meaningful and not their absolute position, MDS solutions were reflected about the x- or y-

axis before overlay to allow for easy visual comparison between conditions. Lines in the plot 

join sentences with the same Rhythm Pattern. Note that the MDS solutions obtained for the 

Stress+Syllable 0 shift and 2π shift conditions were identical even through their respective 

response matrices were different. 

 

 

                                                 
9
 A 2-dimensional representations for the MDS solution was chosen because a 1-dimensional representation 

provided a poor fit for some matrices (goodness-of-fit 'stress' values >0.1). On the other hand, 2-dimensional 

representations provided a good fit for all matrices (goodness-of-fit 'stress' values <0.001). 
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 In the no phase shift condition, sentences with the same rhythm pattern should be 

located closer to each other, than to sentences with the opposite rhythm pattern. Therefore, in 

the MDS maps, the distance between connected points (i.e. the length of the black line) 

should be shorter than the distance between unconnected points. For the Stress+Syllable AM 

combination in the no-phase-shift condition (top left subplot), this was indeed the case. For 

example, participants mapped the nursery rhymes ‘Mary Mary’ and ‘Simple Simon’ closer to 

each other than to the other two nursery rhymes (‘St Ives’ and ‘Queen of Hearts’). However, 

for the Subbeat AM combination in the no-phase-shift condition (bottom left subplot), this 

systematic grouping of sentences by rhythm pattern was not observed. For example, 'St Ives' 

was mapped very far from 'Queen of Hearts' (the same RP), but very near to 'Simple Simon' 

(the opposite RP). 

 With a 1π radians shift, each nursery rhyme should now move systematically closer to 

nursery rhymes in the opposite rhythm group, so that the distance between unconnected  

points is now shorter than the distance between connected points. This indeed occurred for 

the Stress+Syllable AM combination (top middle subplot), as shown by the 'crossed' map that 

was produced. For example, the sentence 'Simple Simon' was now closer in space to 'St Ives' 

and 'Queen of Hearts' (from the opposite rhythm group) than to 'Mary Mary' (from the same 

rhythm group). Recall that the maps were based on confusion matrices,  therefore this pattern 

indicates that 'Simple Simon' was now more often confused for 'St Ives' and 'Queen of Hearts' 

than for 'Mary Mary'. Importantly, this map indicates that participants systematically (rather 

than randomly) misperceived the rhythm pattern of each sentence so that their responses were 

now completely opposite to the no phase shift condition. Therefore the significant drop in 

accuracy observed in the 1π radians phase shift for the Stress+Syllable AM combination (see 

Section 3.2.2.1) was not due to random error, but due to a genuine and systematic shift in 

participants' perception of rhythm. By contrast, the MDS map for the Subbeat AM in the 1π-

phase-shift condition (bottom middle subplot) showed random re-alignment of the sentences 

in psychological space, which was not accompanied by any significant change in participants' 

accuracy performance (see Section 3.2.2.1).  

 Finally, with a 2π radians shift, the maps should now be restored to look like that of 

the original no phase shift condition. For the Stress+Syllable AM combination (top right 

subplot), this restoration occurred exactly as predicted, consistent with the recovery in 

accuracy performance observed in Section 3.2.2.1. In contrast, the MDS map for the Subbeat 
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AM (bottom right plot) was not restored to look like the no-phase-shift condition, but took on 

a completely different configuration. 

 Therefore, for the Stress+Syllable AM combination, participants' psychological maps 

occurred exactly as predicted for each phase-shift condition. Crucially, their maps in the 1π 

shift condition showed a systematic re-alignment consistent with an orderly shift in rhythm 

perception, rather than an unsystematic re-alignment produced by random error (e.g. if 

participants did not know what they were hearing and responded at chance). In contrast, the 

MDS maps for the Sub-beat AM did not show the predicted grouping patterns, or phase-shift 

effects. Hence for the Sub-beat AM stimuli, participants were not using metrical rhythm 

pattern to group nursery rhymes. Indeed, they appeared to be grouping the nursery rhymes at 

random when listening to Sub-beat AMs only.  

 

3.2.2.4  Summary of the Phase Shift Data 

 When phase shifts were used to test the 'Stress Phase Code' proposed in the AM Phase 

Hierarchy model, it was clear that listeners' metrical rhythm perception did depend on the 

relative phase relationship between Stress and Syllable AM tiers. Performance for the 

Stress+Syllable AM tier combination demonstrated all the predicted pattern of changes. No 

other AM tier or tier combination demonstrated these predicted changes. When the accuracy 

of identifying nursery rhymes was the outcome measure, only the Stress+Syllable AM tier 

combination produced the predicted 'V-shaped' pattern of a sharp decline in performance (1π 

radians shift), followed by full recovery (2π radians shift).  

 When the proportion of same:different RP confusion errors was considered, it was 

shown that participants were more likely to confuse nursery rhymes with the opposite 

metrical pattern when Stress+Syllable AMs were phase-shifted by 1π radians. When MDS 

was used to map the similarity of nursery rhymes in perceptual space, the similarity maps for 

the Stress+Syllable AM combination were systematically altered according to the degree of 

phase-shift. Hence, listeners' perceptual experience of metrical rhythm was contingent on the 

phase relationship between the Stress AM and the Syllable AM, in a manner predicted by the 

Stress Phase Code.  
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3.3 CHAPTER SUMMARY 

 

 For both non-phase shifted and phase-shifted stimuli, participants performed exactly 

as expected by the AMPH model. For the non-phase-shifted stimuli, participants produced 

the best metrical rhythm judgments when hearing Stress+Syllable AMs, as compared to all 

the other AM tiers and tier combinations, suggesting that these two tiers contained the most 

metrical rhythm information. For the phase-shifted stimuli, participants showed the expected 

drop-and-recovery pattern only when the Stress+Syllable AMs were shifted by 1π- or 2π- 

radians respectively. No other AM tier or tier combination produced this characteristic 

cyclical pattern of responding. Moreover, the analysis of participants' pattern of confusion 

errors by MDS mapping indicated that the drop in performance for the 1π-radians 

Stress+Syllable AM shift was not a result of random error (e.g. uncertainty and guessing). 

Rather, the performance drop was generated by a systematic shift in participants' perceptual 

mapping of rhythm patterns. Therefore, only for Stress+Syllable AM stimuli, participants' 

rhythm perception was being systematically altered by the degree of phase shift between the 

two tiers. This would only occur if, like the AMPH model, listeners were using the Stress-

Syllable phase relationship to infer the metrical rhythm pattern of the sentences.   

 Therefore, these empirical listening data provide strong support for the two main 

tenets of the AMPH model. These are that (1) Speech rhythm information is primarily carried 

by Stress- and Syllable-rate AMs within the speech envelope; and (2) Speech rhythm patterns 

are 'coded' via the phase relationship between Stress and Syllable AMs. In these two ways, 

the AMPH model replicates the behaviour of human listeners when computing the metrical 

rhythm pattern of a sentence. 
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PART II SUMMARY & DISCUSSION 
 

 In Chapter 2, the AMPH model was presented as a signal-based method for 

computing the prosodic rhythm information conveyed by a speaker from the amplitude 

modulation structure of their speech. As demonstrated by the results of the tone-vocoding 

experiment in Chapter 3, the AMPH model made psychologically-valid assumptions, since 

human listeners also perceived prosodic rhythm using the same amplitude modulation cues as 

the AMPH model. For example, listeners were most accurate in making metrical rhythm 

judgments when hearing the combination of Stress+Syllable AMs, indicating that speech 

rhythm information resided primarily at these two modulations rates in the envelope 

(Research Question 1). Listeners were also found to base their judgments of metrical rhythm 

pattern on the phase relationship between Stress and Syllable AM tiers, since their judgments 

were systematically altered by phase-shifts of this relationship (Research Question 2). 

Therefore, the AMPH model is a psychologically-relevant way to represent speech rhythm 

using amplitude modulation patterns in the speech envelope.  

 

The Amplitude-Based AMPH Model and Durational Measures of Rhythm 

 The AMPH model represents an advance in both methodology and theory for speech 

rhythm research. The hierarchical AM approach is a new method for isolating the rhythmic 

properties of speech from its phonetic content, and may be useful as an alternative research 

tool to traditional 'rhythm-metrics' or speech re-synthesis. Furthermore, the data support the 

view that rhythm patterns in speech are not found in durational isochronies. Rather, rhythms 

lie in the statistics of temporal structure, such as phase relationships between modulation 

rates.  

 One significant advantage of coding rhythm via AM phase patterns is that such 

coding would be robust to random durational variations when the speaker speeds up or slows 

down - a major contributor to anisochrony in speech. Phase relationships between Stress and 

Syllable AMs within a particular stress foot can remain constant even if the overall duration 

of the foot varies from foot to foot. This is because once phase-locked, both Stress and 

Syllable oscillatory cycles will compress or stretch in synchrony. Consequently, if listeners 

use phase relationships to detect rhythm patterns, they will still be able to perceive rhythm 

patterns even when the inter-stress duration (the length of prosodic feet) is not isochronous. 
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This feature of phase-coding may help to reconcile conflicting views concerning the quasi-

rhythmic structure of speech (Pike, 1945; Abercrombie, 1967) despite its anisochrony 

(Dauer, 1983).  

 However, it is important to note that the amplitude-based rhythm information in the 

speech envelope is complimentary to the other acoustic sources of rhythm information - such 

as durational variation, or pitch variation. Therefore, the success of the AMPH model does 

not invalidate previous attempts at describing rhythm through durational variation (i.e. 

rhythm-metrics). Rather, it serves to illustrate that multiple sources of rhythm information are 

present in the acoustic signal of speech. 

 For example, durational contrasts within the prosodic foot are expected to work co-

operatively with amplitude changes in the phase coding of rhythm when both co-vary (as is 

usually the case in natural speech, e.g. Kochanski et al, 2005). Although not explicitly 

manipulated in this experiment, increasing the length of the stressed syllable compared to the 

unstressed syllable within the same prosodic foot would also increase the temporal peak-to-

peak separation of both syllables. This would support their encoding as two separate syllables 

rather than one long syllable by reducing their energy overlap in time. Therefore duration and 

intensity cues have complementary roles in rhythm perception and syllable prominence.   

 

The AMPH Model and Speech Segmentation 

 An additional novel feature of the AMPH model is that syllable beats are detected 

automatically, enabling a range of possible segmentation schemes to emerge from computed 

prosodic patterns 'for free'. Hence prior lexical knowledge about the semantic content of the 

sentence is not required for efficient parsing, although clearly as lexical knowledge is 

acquired it will support parsing via 'top-down' processing. If human speech perception is 

indeed tuned to AM hierarchies, then the AMPH approach would enable naïve listeners (e.g. 

infants) to use prosodic patterns for speech segmentation in the absence of lexical knowledge.  

Furthermore, the hierarchical nature of the AMPH model resonates strongly with classical 

models of poetic (Liberman & Prince, 1977) and musical (Lerdahl & Jackendoff, 1983) 

rhythm and meter. This synergy may suggest that intuitions about the hierarchical nature of 

metrical structure arise from the fundamentally hierarchical nature of the speech signal itself. 
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The AMPH Model and Neural & Articulatory Mechanisms  

 The AMPH model was also motivated by the proposal that speech-to-brain temporal 

structure mapping is important for speech perception (e.g. Poeppel, 2003; Giraud & Poeppel, 

2012). By this view, the brain detects and represents temporal structure in the acoustic 

environment, drawing from this temporal structure key regularities and statistics that define 

the perceptual experience of sounds. Focusing on the amplitude envelope as a primary source 

of this temporal structure, the AMPH model captures highly-ordered patterns of amplitude 

modulation that affect how listeners experience the rhythmic structure of speech sounds. In 

this sense, the AMPH model reveals latent acoustic temporal structure that could be mapped 

onto (entrain) neuronal oscillatory patterns in order to generate a percept of rhythm. 

 Furthermore, since speech is produced by motor articulators like the jaw, lips and 

tongue, the oscillatory AM tiers and patterns described could well correspond to these motor 

articulators and their actions (e.g. Tilsen, 2009). Therefore, the phase statistic investigated 

here could also be an important index for motor synchronisation and timing (e.g. Cummins & 

Port,1998; Port, 2003), since synchronised motor actions are producing these phase-locked 

AM patterns in the acoustic signal. Consequently, the AM hierarchical representation of 

speech rhythm also fits well with the articulatory mechanisms that could be generating and 

synchronising these acoustic AM patterns.  

 

Limitations of the AMPH Model 

 The AMPH model is conceptually simple, theory-driven, and is psychologically-

relevant to how listeners perceive rhythm patterns in metrically-produced speech. 

Nevertheless, the current AMPH model is also limited in several ways. As noted previously, 

it does not take into account the possible contribution of non-intensity-related acoustic cues 

for rhythm perception such as pitch or duration. Second, the AMPH model uses AM 

hierarchies that are derived from demodulation of the wholeband speech signal. To more 

accurately reflect physiological processes in the cochlear, where the speech signal is 

effectively split into multiple frequency channels, a more complete approach may use AMs 

from the envelopes of each frequency channel, using a weighted procedure to combine these 

'sub-band' AMs for rhythm calculation. Finally, the AMPH model was developed and tested 

exclusively using metronome-timed and metrically-regular (nursery rhyme) speech. It would 

be important to test the model with freely-produced speech, to see if the model is able to 
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'scale-up' to the challenges presented by such speech. These short-comings of the AMPH 

model are addressed in Part III of the thesis. 
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MOTIVATIONS FOR A NEW MODEL 

 

 The original AMPH model used a simple 5-tier hierarchical representation of the 

wholeband speech envelope. This model demonstrated that metrical rhythm patterns arise 

from the phase relationship between 'Stress' and 'Syllable' rates of amplitude modulation 

(AM). While this simple model yielded a relatively good description of metrical structure in a 

sample of regularly-timed speech, it relied on various simplifications concerning the complex 

spectro-temporal structure of speech. While this was a necessary expediency to constrain the 

problem space addressed during a first attempt at such a model, the AMPH model relied on a 

set of theoretical assumptions which can be questioned.  

 Therefore, a new Spectral AMPH (S-AMPH) model was derived. This new model 

makes two major improvements to the original AMPH model. First, syllable (vowel nucleus) 

detection is improved by using a more complex spectral sub-band representation of the 

amplitude envelope, instead of using the wholeband envelope. Second, the tier-structure of 

the AM hierarchy is derived in a 'bottom-up' fashion from the modulation statistics of speech, 

rather than being decided on the basis of theoretical assumptions. 

 

1. USING SPECTRAL (SUB-BAND) ENVELOPES INSTEAD OF THE WHOLEBAND 

ENVELOPE TO DETECT SYLLABLE VOWEL NUCLEI 

  Different types of speech sounds contain energy (modulation) at different spectral 

frequencies. For example, a vowel sound such as /a/ will typically contain the most energy 

around 1000 Hz (corresponding to the first two formants), while a fricative sound such as /s/ 

will contain energy at much higher frequencies around 5000 Hz. In the wholeband envelope 

of speech, it is not possible to determine whether a particular modulation pattern was 

produced by a low-frequency sound (like /a/) or a high-frequency sound (like /s/), because 

the wholeband envelope represents the sum of all the energy across all speech frequencies at 

each point in time.  

 This is a problem because not all of the speech sounds that elicit strong amplitude 

modulation are equally important for determining speech rhythm. For example, rhythmic 

beats ('p-centres') in speech are most strongly associated with the onsets of syllable vowel 
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nuclei (Morton et al, 1976; Allen, 1972; Scott, 1993). Therefore, a listener hearing the word 

"cats" would perceive it as having just one rhythmic beat (p-centre), located around the onset 

of the vowel /a/. However, the wholeband envelope of the utterance "cats" contains not one, 

but two major peaks - the first occurring at the vowel /a/, and the second at the consonant /s/.  

In the original AMPH model (which used the wholeband envelope), this presented a problem, 

because there was no way of separating out two such peaks, and no way to evaluate which 

peak actually corresponded to the rhythm-bearing vowel nucleus. In order to separate out the 

two modulation peaks associated with /a/ and /s/, one would have to obtain two different 

'sub-band' envelopes corresponding to low (~1000 Hz) and high (~5000 Hz) frequency bands 

in speech respectively. In this case, the rhythm of the word would be given by the modulation 

pattern of the low frequency sub-band envelope, not the high frequency sub-band envelope.  

 For this reason, p-centre research has typically focused on a single narrow sub-band 

of speech frequencies corresponding to the lower (fundamental, first or second) formants of 

spoken vowels. For example, Cummins & Port (1998) used a spectral band of 700-1300 Hz 

for their envelope-based p-centre analysis of sentences such as "big for a duck". Patel et al 

(1999) used a spectral band of 390-1015 Hz for their p-centre analysis of CV syllables 

containing the vowel /a/ or /i/.  

 This single sub-band approach is efficient when the stimulus set consists either of 

single syllables or short sentences containing just a few vowels with similar formant 

frequencies. However, when the stimulus set consists of long sentences with a diverse range 

of vowels (as was the case here), this approach is not as satisfactory. First, vowels with 

formant frequencies that are higher or lower than the selected range could be omitted. For 

example, the vowel /i/ with a typical first formant of 342 Hz and a second formant of 2322 

Hz (for a male speaker, Hillenbrand et al, 1995) would not be represented in the frequency 

ranges used by Cummins & Port (1998) or Patel et al (1999). Second, speakers may vary the 

way they produce a particular vowel in different parts of the utterance, as a result of prosodic 

stress or emphasis. This could result in the vowel formants becoming higher or lower than 

expected, and again being omitted from the single sub-band representation.  

 One solution to this problem is to make the bandwidth of the single sub-band very 

wide in order to accommodate large variations in vowel formant frequency (e.g. 300-3000 Hz 

rather than 700-1300 Hz). However, in doing this, other non-vowel speech sounds could also 

be included into the sub-band, masking the actual temporal pattern of the vowels. Another 

solution is to use dynamic formant-tracking, where the frequency of the formants is tracked 
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on a moment-by-moment basis, allowing for adjustments to be made dynamically to the 

bandwidth of the sub-band depending on the speech sounds being uttered. However, this 

approach relies heavily on the success of the formant-tracking algorithm, and could yield 

spurious results during sections of speech when the formants are not clearly identifiable.  

 Here, a different approach is used to identify syllable vowel energy in the frequency 

spectrum. The frequency spectrum is divided into multiple sub-bands, these sub-bands are of 

an 'optimal' bandwidth so that each sub-band captures mutually non-redundant modulation 

patterns. Each sub-band (henceforth simply called 'spectral band') provides a set of 

'candidate' syllable vowels, which are peaks in the envelope of that spectral band. These 

candidate peaks are then evaluated according to set criteria, resulting in the final set of peaks 

deemed to correspond to actual syllable vowels. Since the spectral bands cover the entire 

frequency range (100 to 7250 Hz), variations in vowel frequency simply result in the vowel 

being represented in a different spectral band, rather than being omitted entirely.  

 Chapter 4, Section 4.3 describes the procedure used to determine the 'optimal' 

division of the frequency spectrum into spectral bands. This was done via PCA which uses 

the underlying correlation structure of the speech signal. Therefore, there is no claim or 

requirement that these spectral bands should correspond to the formant frequencies. Rather, 

these bands are simply a parsimonious way to represent the spectral variation in speech. 

Chapter 5, Section 5.2 describes the procedure used for detecting and selecting the candidate 

peaks from each spectral band, resulting in the final syllable vowel pattern. Chapter 6, 

Section 6.1 evaluates the effectiveness of this automatic procedure for syllable vowel 

detection, using two corpora of metronome-timed and untimed speech. Syllable vowel 

detection accuracy levels of over 80% for untimed speech, and over 97% for metronome-

timed speech were achieved. 

 

2. USING A DATA-DRIVEN INSTEAD OF A THEORY-DRIVEN AM HIERARCHICAL 

STRUCTURE 

 The second improvement in the S-AMPH model is a new data-driven derivation of 

the AM hierarchical structure. In the original AMPH model, five AM rate bands had been 

proposed based on the rationale that different linguistic units should correspond to different 

rates of modulation in the speech envelope. It was then demonstrated in the tone-vocoder 

experiment (Chapter 3, Section 3.2.1) that two of these modulation bands, corresponding to 
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the prosodic stress foot ('Stress AM') and the syllable ('Syllable AM'), were most important 

for speech rhythm perception. However, the functional significance of the three remaining 

modulation bands within the AM hierarchy ('Slow', 'Subbeat' and 'Fast') was unclear since 

these were not used in the AMPH model's computation of rhythm. It was possible that these 

three bands reflected other types of linguistic information (i.e. related to phrasing for the 

Slow band, or to phonemes for the Fast band). However, it was also possible that the original 

division of modulation bands was not an accurate reflection of the 'true' information content 

within the modulation spectrum. That is, modulation bands could have been artificially 

created to comply with theoretical assumptions where there in fact were none.  

 To address this issue, a new AM hierarchy structure was derived for the S-AMPH 

model. Rather than deciding the number of AM tiers and the bandwidths of these tiers in a 

theory-driven 'top-down' fashion, the new AM hierarchy was allowed to emerge in a 'bottom-

up' manner from the statistics of the modulation spectrum. Starting with an original set of 24 

finely-spaced modulation channels, a PCA procedure was used to dimensionally-reduce these 

to an appropriate number of non-redundant modulation rate bands. Three modulation rate 

bands emerged from this process, corresponding to 'Stress', 'Syllable' and 'Phoneme' rates of 

amplitude modulation (discussed in Chapter 4, Section 4.4). These 3 new modulation rate 

bands, emergent from the structure of the speech data itself, then formed the new S-AMPH 

model's AM hierarchy.  
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OVERVIEW OF PART III STRUCTURE  

  

 Part III of the thesis is divided into 3 chapters. Chapter 4 explains the derivation of 

the new spectral bands and modulation rate bands using PCA, in two dimensionality-

reduction exercises. First, the spectral dimensionality reduction process is described, which 

resulted in 5 spectral bands. Next, the modulation rate dimensionality reduction process is 

described, which resulted in 3 AM tiers, forming the new AM hierarchy. Together, these 

processes resulted in the new 5 x 3 spectro-temporal representation of the speech envelope 

used in the S-AMPH model. 

 In Chapter 5, the new procedures for identifying syllable vowel nuclei and 

computing prosodic prominence, based on the new 5 x 3 representation, are described. The 

new Prosodic Strength Index (equivalent to the AMPH Stress Phase Code) is introduced.  

 In Chapter 6, the new S-AMPH and original AMPH models are functionally 

evaluated in terms of success in (1) automatic syllable vowel identification, and (2) automatic 

prosodic stress transcription. The original AMPH model had been developed and tested 

exclusively using metronome-timed speech. While this type of speech represents the 

rhythmic 'ideal', since the prosodic template is known and produced exactly in an 

isochronous fashion, it lacks ecological validity. Spontaneous human utterances are neither 

isochronous nor perfectly metrically-regular. Hence, while metronome speech can be used 

for demonstrations 'in principle', it is important to see the extent to which any model can 

'scale-up' to meet the challenges of real speech. With this in mind, the AMPH and S-AMPH 

models were tested on both metronome-timed and freely-produced (un-timed) speech.  
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4    A NEW SPECTRO-TEMPORAL 

REPRESENTATION OF THE AMPLITUDE 

ENVELOPE 

 
 The original AMPH model had used the wholeband amplitude envelope to derive the 

modulation hierarchy. In fact, it is known that the human cochlea splits the speech signal into 

multiple frequency channels. To model the frequency resolution seen in the normal human 

listener, an estimated 29 frequency channels are needed within the range of 100-7250 Hz 

(ERBN-spacing, Glasberg and Moore, 1990; Moore, 2012). For a complex time-varying 

sound like speech, each of these cochlear channels transmits its own temporal fine structure 

carrier, modulated by its own amplitude envelope.  

 The speech envelope patterns in the various cochlear channels are not identical, since 

at any instant (a) speech sounds do not consist of cross-sectionally equal power at all 

frequencies, and (b) the essential information in speech involves changes in power over time 

that differ between frequency channels. In other words, speech sounds selectively activate 

groups of spectral channels for brief periods of time, and their relative pattern of activation 

continuously changes over time. This relative pattern of activation across channels is 

captured in their individual temporal amplitude envelopes. By taking only the wholeband 

envelope, the original AMPH model in effect used a power-weighted summation of these 

individual cochlear channel envelopes. Since low-frequency channels tend to have higher 

power than high-frequency channels, the wholeband envelope is dominated by these low-

frequency components, similar to low-pass filtered speech (e.g. speech heard by fetuses in the 

womb). Therefore, while the wholeband envelope foregrounds prosodic rhythm, the 

information about relative patterns of channel activation that contributes toward speech 

intelligibility (including distinguishing between vowel and non-vowel sounds) is 

consequently discarded and unused.  

 For example, when only the wholeband envelope is used to vocode speech (i.e. a 

single-channel vocoder), the resulting vocoded speech is completely unintelligible. As the 

frequency spectrum is divided into more spectral bands and these sub-band envelopes are 

used for vocoding, speech intelligibility increases accordingly. A classic study by Shannon et 

al (1995) demonstrated that vowel and sentence recognition scores of 80% could be achieved 
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when only three spectral bands were used for noise-vocoding. Furthermore, two bands (i.e. 

binary information) were already sufficient to convey 90% of the information about the 

voicing and manner of a medial consonant (i.e. a/C/a), although information about place of 

articulation required more spectral bands. These results indicate that the information from 

individual cochlear channels is highly mutually redundant, since ~24 finely-spaced cochlear 

channels (Shannon used a cut-off of 4 kHz) can effectively be 'collapsed' into just 3 broad 

spectral bands with relatively modest loss to intelligibility. Therefore, to include spectral 

patterns of variation into the S-AMPH model, one need not use an exceedingly high-

dimensional representation of speech rhythm (e.g. 29 cochlear channels x 5 AM tiers = 145 

dimensions). Rather, a smaller number of non-redundant, but broader, spectral bands may be 

used.  

 

4.1 USING PRINCIPAL COMPONENT ANALYSIS TO IDENTIFY NON-

REDUNDANT SPECTRAL BANDS 

 

 To achieve this dimensionality reduction in the frequency domain, principal 

component analysis (PCA) can be applied. The PCA method has long been used for 

dimensionality reduction in speech, and for identifying spectral differences between speech 

sounds. For example, Klein et al (1970) used PCA analysis to classify 12 Dutch vowel 

sounds that had been produced by 50 different male speakers. They found that 4 PCA factors 

were sufficient to represent 75% of the total variance contained in the 18 original 1/3-octave 

spectral channels. Pols et al (1973) later used the same dataset to compare the results of PCA-

based vowel discrimination with traditional formant-based vowel discrimination. In the 

formant analysis, they found that the first and second formant frequencies (F1 and F2 

respectively) were the most discriminatory acoustic features of the vowels (i.e. the vowels 

occupied different regions on a log F2 - log F1 plot). Moreover, Pols et al (1973) found that 

the PCA method (using 3 or more factors) produced similar discrimination performance to 

the formant analysis. Therefore, principal component analysis is a valid method for speech 

analysis, and has become widely used in automatic speech recognition algorithms.  

 The aim of the PCA procedure used in this thesis is to identify boundaries for a new, 

parsimonious spectral filterbank with only a few channels that have a wide bandwidth. This 

new spectral filterbank should yield wide spectral bands of speech where the information 
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within the bands is redundant, but the information between the bands is non-redundant. By 

analogy to vocoding, the new spectral filterbank should contain as few vocoding channels as 

possible, but still allow for good speech discrimination. Rather than defining the boundaries 

of the new filterbank by formant frequency (as the formants frequently overlap), a criteria of 

redundancy is used, based on the PCA procedure.  

 Therefore, unlike a typical PCA analysis, the key outcome of interest here is not the 

component scores (as in Klein et al, 1970), but the component loadings. Component scores 

are the transformed representations of the data after it has been dimensionally-reduced to its 

dominant components. However, here the interest is not in the transformed data per se
10

, but 

in how that transformation was achieved - that is, what were the underlying patterns of 

correlation between the channel variables that led to that particular transformation. These 

underlying patterns of correlation are expressed as the component loadings. The component 

loadings across the channels reflect the similarity or redundancy in the modulation 

information carried by each cochlear channel. Cochlear channels that carry similar 

(redundant) patterns of amplitude modulation should also be strongly correlated, and tend to 

have similar loading (i.e. strongly positive or negative) on the various PCA components that 

are extracted. Conversely, cochlear channels that carry different (non-redundant) patterns of 

modulation should be poorly correlated, and should show different loading patterns on the 

PCA components. Therefore, by analysing the patterns of component loading across the 

channels, one should be able to identify groups of channels that carry similar (redundant) 

modulation information, and therefore may be considered as belonging to the same wider  

spectral 'band' - which is the aim of the exercise.   

 For example, suppose that cochlear channels 1-3 are all carrying one pattern of 

modulation, and cochlear channels 4-6 are carrying another different pattern of modulation. 

When we carry out the PCA analysis, we might see that for PCA component 1, the loading 

across cochlear channels 1-6 shows a pattern of '- - - + + +'. For PCA component 2, this 

loading pattern might switch to the opposite as '+ + + - - -'. Therefore, groups of channels 

carrying similar modulation patterns will show similar loadings for each PCA component. 

Furthermore, the boundary between these two groups of redundant channels can be inferred 

where the loading pattern changes abruptly, quickly becoming more positive or more 

                                                 
10

 For example, if one were to subsequently filter or perform phase computations on these component scores (as 

part of the rhythm identification process), it would not be clear how the results would relate back to the original 

modulation patterns in the acoustic signal. 
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negative
11

. In this example, this abrupt change occurs between channels 3 & 4. Therefore, 

spectral regions where the PCA loading pattern remains stable should indicate redundancy, 

whereas spectral regions where the loading pattern changes should indicate boundaries 

between non-redundant spectral bands. These boundary values can then be used to construct 

a new spectral filterbank to filter speech into non-redundant spectral bands. 

 

4.2 SPEECH MATERIAL USED FOR DERIVING THE NEW SPECTRO-

TEMPORAL REPRESENTATION  

 

 Again, the speech material used to derive the new model was nursery rhymes. A large 

multi-speaker corpus of children's nursery rhymes was used to generate the underlying 

statistics for the revised S-AMPH model. There were 44 different nursery rhymes, each 

produced by 6 female native British English speakers, giving a total of 264 spoken samples. 

Over the 6 speakers, the nursery rhyme samples varied between 15.9 and 52.2 seconds in 

length (average 28.2 seconds). Samples were digitally recorded using a TASCAM digital 

recorder (44.1 kHz, 24-bit).  

 The full list of these nursery rhymes, and a brief description of their metrical patterns 

is provided in Appendix 4.1. The text for the rhymes was compiled from children's books 

such as 'This Little Puffin' (Puffin Books, 1991) and 'Nursery Treasury' (Miles Kelly 

Publishing, 2010). The nursery rhymes were freely-produced by the speakers (not metronome 

timed) in a child-directed style of speaking (CDS). As described in the Introduction (Section 

1.11), CDS is an exaggerated prosodic register characterised by higher pitch, smoother and 

wider pitch excursions, and a slower rate of speaking with more pauses (Fernald, 1989; 

Fernald & Simon, 1984). It was expected that the rhythm and prosody of the nursery rhymes 

would be enhanced by the use of this speaking register, making the underlying statistical 

distributions for these rhythms more distinct.  

 

  

                                                 
11

 Pols et al (1973) refer to this method of identifying steep slopes in component loading, noting that the slopes 

in their data corresponded well with F1 and F2 boundaries. 



118 

 

4.3 SPECTRAL DIMENSIONALITY REDUCTION 

4.3.1 THE ORIGINAL 'HIGH DIMENSIONAL' COCHLEAR CHANNEL 

REPRESENTATION 

 

 The aim of the spectral dimensionality procedure was to identify adjacent 'cochlear 

channels' that had similar modulation patterns so that these could be grouped into larger 

spectral bands. To generate these cochlear channels, the speech signal was filtered into 29 

ERBN-spaced frequency channels spanning 100-7250 Hz, mirroring the frequency 

decomposition that occurs at the cochlea of a normal human listener (Glasberg and Moore, 

1990; Moore, 2012). The edges and bandwidths of the spectral filterbank are listed in 

Appendix 4.2. The Hilbert envelope was extracted from each cochlear channel and low-pass-

filtered under 40 Hz. This high-dimensional (29 dimension) representation of the speech 

envelope may be plotted as a modulation 'landscape', which depicts the modulation power in 

each cochlear channel, as a function of time. An example of this is shown in Figure 4.1, 

which shows the modulation patterns for the sentence "Mary had a little lamb". In the plot, 

red indicates high modulation power, and blue indicates low power.  

Figure 4.1. (Top) Envelope patterns across 29 ERBN-spaced cochlear channels. Data has 

been interpolated across channels to appear continuous. Y-axis indicates channel frequency 

and z-axis indicates amplitude (also coded in colour). (Bottom) Sound-pressure waveform 

with 40 Hz low-pass filtered wholeband Hilbert envelope overlaid in red. 

 

   "Ma          -ry                      had             a         li                     -ttle              lamb" 
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 From visual inspection, it may be observed that certain clusters of cochlear channels 

tend to become activated together or become 'co-modulated' in time. For example, a cluster 

of approximately 8 channels centred around 2000 Hz (red box) collectively show little 

activity in the first 200 ms, a time when most other channels are active. Conversely, this 

cluster becomes active at 600 ms (when there is little activity elsewhere) and again at about 

1400 ms. Comparing this to the actual spoken phrase, these two clusters of activity 

correspond to the vowel [æ] in "had" and "lamb". Figure 4.1 illustrates that the speech signal 

does indeed, as proposed earlier, elicit broadly similar temporal patterns of activity within 

groups of cochlear channels. If these clusters of cochlear channels are co-modulated in time, 

they also carry mutually redundant information. Therefore, a dimensionality-reduction 

procedure such as PCA would be appropriate. In this section, the focus is on the spectral PCA 

analysis. Appendix 4.3 shows other analyses that were also conducted on the speech data, 

including plotting the RMS power across the frequency spectrum, and examining the 

intercorrelations between cochlear channels. 

 

4.3.2 SPECTRAL PCA : COMPONENT LOADINGS 

 

 Next, PCAs were carried out in the spectral dimension. A separate PCA was 

conducted for each nursery rhyme sample and each participant, taking the individual 

timepoints as observations and the 28
12

 cochlear channels as variables. Recall that the aim of 

the analysis is to define underlying patterns of spectral redundancy by noting which groups of 

channels (variables) load in a similar fashion onto the extracted PCA components. 

Component loadings reflect the correlation between the variables (channels) and the 

extracted principal components. Consequently, if two adjacent channels both load strongly 

(either positively or negatively) onto a given component, it is assumed that they contain 

similar (mutually redundant) information about that PCA component.  

 Each separate PCA for each sample yielded 28 principal components. Each of these 

components had a different loading pattern across the 28 original cochlear channels. After 

running all 264 separate PCAs (44 nursery rhymes x 6 speakers), the sets of component 

loadings for each extracted principal component were averaged, resulting in one grand 

                                                 
12

 In the spectral filterbank, the first channel was a low-pass filter rather than a band-pass filter (see Appendix 

4.2). This channel captured the 'DC' component of the speech signal and was excluded from the analysis 

because of the large amplitudes it contained. Therefore, the PCA was conducted on 28 spectral channels, 

spanning 137 Hz (rather than 100 Hz)  to 7250 Hz. 
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average set of component loadings per principal component. For this exercise, only the 

pattern of loadings across the channels was important and not the sign (positive or negative). 

Therefore, the absolute loading values were taken to compute the average. This 'rectification' 

of the component loadings was done to avoid mutual cancellation in the averaging process. 

This cancellation would occur when the loading pattern had an opposite valence across 

samples. For example, Figure 4.2 shows the loading patterns that could be observed for the 

first 6 cochlear channels on principal component 1 for two different samples. 

Figure 4.2. Hypothetical example of PCA loading patterns for a single component, across 6 

cochlear channels, for two nursery rhyme samples. The vertical position of the '+' and '-' 

markers indicates greater positivity or negativity respectively. 

 

 Cochlear channel :   1 2 3 4 5 6 

 Nursery rhyme 1 :    +  
+
  +  -  _  - 

 Nursery rhyme 2 :    -  _  -  +  
+

  +  

 In both nursery rhyme samples, there is evidence of clustering between channels 1-3 

and 4-6 in terms of similarity in loading pattern. However, if the raw component loadings 

were averaged across the two samples, the resulting average would be close to zero for all 

channels. This mutual cancellation was indeed the outcome when the raw component 

loadings were averaged across all 264 samples. Therefore, absolute component loadings were 

used to compute the averages instead. 

 In fact, a switch in the valence of component loadings can be created simply by 

rotating the eigenvector basis matrix by 180 degrees, which would not change the variance 

explained (eigenvalues). As such, the +/- signs in component loadings are in effect arbitrary, 

the relative pattern of loading across channels is more important. The resulting 'rectified' 

(absolute valued) loading functions allow channel clustering patterns to be observed, but do 

not allow the computation of principal component scores (which were not used in this 

analysis).  

 When interpreting these rectified loading patterns, two features are of interest. First, 

peaks indicate clusters of cochlear channels that all load strongly onto the given principal 

component. The higher the peak, the stronger the loading. However, these loadings could 
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have been either positive or negative originally for each sample. Second, troughs are also of 

interest because they indicate boundary regions between groups of spectral channels that 

behave similarly. These troughs could arise from loading sign changes in the original non-

rectified loading patterns (e.g. crossings from positive to negative, or negative to positive, 

that become inflections after rectification), or else local drops in loading strength. Either way, 

these troughs indicate the abrupt change that one expects when transitioning from a region 

where spectral channels all carry similar information, to a region where different information 

is being transmitted. Consequently, these troughs identify potential boundaries of non-

redundant spectral bands (which is the aim of this exercise).  

 The PCA resulted in 28 principal components, each with a different loading pattern, 

which was too many patterns to consider simultaneously. Therefore, only the top 5 

components were considered. These top 5 components contributed the highest amount of 

variance individually, and cumulatively accounted for 65% of the total variance. The top 5 

component loadings for individual speakers are shown in Appendix 4.4, but here we 

concentrate on the grand average across all samples and speakers. 

 To identify 'spectral bands' from the rectified component loading patterns, two criteria 

were used. First, at least 2 of the 5 principal components should show a distinct peak within 

that spectral band. Second, at least 2 of the 5 principal components should show troughs at 

the upper and lower boundaries of that spectral band. Figure 4.3 shows the rectified 

component loadings for principal components 1-5, averaged across all 264 speech samples. 

In the figure, the components accounting for more variance (lower numbered) are shown in 

darker, thicker lines. Peaks and troughs in component loading were located by visual 

inspection, and troughs indicating the boundaries between spectral bands are marked with red 

dots in the figure. As shown in the figure, 5 spectral bands were identified that fulfilled the  

stated criteria of peaks and troughs. The boundaries between these 5 spectral bands are 

indicated as 4 vertical dotted lines. In most cases, the boundary (vertical line) was easy to 

determine because the troughs of the different principal components were closely aligned. 

However, for the boundary between spectral bands 3 and 4, the troughs were not perfectly 

aligned, so the boundary was drawn at the approximate mid-point between the 4 nearest 

component troughs (red dots).   

 Figure 4.3 also shows that component 1 (the thickest line) had relatively even 

loadings across a broad range of spectral frequencies. This was different from the sharp peaks 

and troughs observed in the rectified loading pattern of the other components, which were 
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more informative in identifying the spectral bands. The first principal component is unique 

because it reflects the mean correlation over all the variables, and so is strong when the 

underlying variables (channels) are highly correlated. Appendix 4.3 shows that the loading 

pattern of the first principal component (in Figure 4.3) does indeed resemble the grand mean 

correlation pattern over all the cochlear channels. Moreover, across spectral bands, each 

band's mean correlation strength was found to be inversely related to its RMS power. This 

indicates that higher power in a spectral region does not necessarily imply stronger 

correlation or co-modulation with other spectral regions. 

 

Figure 4.3. Mean rectified loadings for top 5 principal components, averaged across all 264 

speech samples. The red dots mark troughs in loading occurring at the boundaries between 

spectral bands. The boundaries themselves are shown as vertical dotted lines.  

 

  

 Table 4.1 summarises the 5 spectral bands that were identified in the spectral 

dimensionality reduction  process, as shown in Figure 4.3. Each band groups together 

roughly the same number (between 5 & 7) of original cochlear channels. Given the strong 

resemblance between spectral band 1 (100-300 Hz) and the typical range of fundamental 

frequencies in human speakers (e.g. Baken, 1987 : Adult male 85-155 Hz, Adult female 165-

255), it might not be unreasonable to suggest that spectral band 1 corresponds to fundamental 

Band 1           Band 2   Band 3       Band 4      Band 5 
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frequency energy. However, there is insufficient evidence to claim the same correspondence 

between spectral bands 2 to 5 and the first to fourth formants. Nonetheless, these 5 spectral 

bands achieve the desired aim of a parsimonious, low-dimensional and less-redundant 

representation of the spectral structure of speech. This 5-band spectral structure will form 

part of the new S-AMPH model, introducing a manageable amount of spectral complexity 

into the rhythm detection process. 

 

Table 4.1. Spectral bands indentified from component loading patterns 

 

  

Spectral Band No of ERBN Channels Frequency Range  (Hz) 

Band 1  5 100-300 

Band 2 5 300-700 

Band 3  7 700-1750 

Band 4  7 1750-3900 

Band 5 5 3900-7250 
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4.4 MODULATION RATE DIMENSIONALITY REDUCTION 

4.4.1 THE ORIGINAL 'HIGH DIMENSIONAL' MODULATION RATE 

REPRESENTATION 

 Next, a similar statistical approach was used to identify modulation rate bands in the 

amplitude envelope of speech, which would then constitute tiers in the AM hierarchy of the 

new S-AMPH model. Recall that the amplitude envelope of speech contains a continuous  

'modulation spectrum' of modulation rates. To generate this initial 'high-dimensional' 

modulation spectrum representation, the Hilbert envelope was passed through a modulation 

filterbank with a very fine resolution. This filterbank comprised 24 channels logarithmically-

spaced between 0.9-40 Hz. The parameters for this fine modulation filterbank are detailed in 

Appendix 4.2. The resulting modulation rate 'landscape' for the sentence "Mary had a little 

lamb" (for the spectral band of 0.5-2kHz) is shown in Figure 4.4. The red-blue striation 

pattern reflects oscillatory changes in instantaneous modulation amplitude (red = peak, blue = 

trough). The width of this striation pattern graduates from wide (bottom) to narrow (top) 

consistent with the increasing modulation rate and decreasing period, so that modulation rate 

is doubly represented as the y-axis and as the time-pattern of red/blue alternation.  

 
 

Figure 4.4. Modulation pattern for 24 logarithmically-spaced modulation channels over time. 

Data has been interpolated across modulation channels to appear continuous. The y-axis 

indicates modulation rate and the z-axis indicates z-scored amplitude (also coded using colour). 

 
   "Ma               -ry                  had             a             li                 -ttle              lamb" 

↕ 
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 Strikingly, the pattern of modulation for the rate channel around 3-4 Hz (bold black 

box) follows the syllable pattern of the sentence quite closely, with peaks in amplitude (black 

arrows) corresponding approximately to the temporal onsets of vowels. Since vowel onsets 

are associated with the p-centres in speech (Morton et al, 1976), modulations around this 

syllable rate may provide information about speech rhythm patterns. Since the sentence in 

this example was spontaneously-produced and not metronome-timed, there are natural 

fluctuations in the local syllable rate (number of syllables per second). These rate fluctuations 

are reflected as small vertical shifts (↕) in the sequence of peaks within the modulation band 

(bold black box). Despite these shifts, peaks and troughs (red and blue coloured spots) at this 

'syllable' rate are temporally and spectrally well defined as 'spots' rather than 'smears'.  

 In comparison, at slower modulation rates, peaks and troughs tend to be smeared 

horizontally (i.e. in time), while at faster modulation rates they are smeared vertically (i.e. in 

frequency). The transmission of information by modulations, summarized in this modulation 

spectrum, requires a trade-off between resolution in time and modulation frequency. Faster 

modulations above 4 Hz show power changes over time that co-occur with very slow 

modulations below 4 Hz (dotted box). For example, faster modulations (>4 Hz) collectively 

show peaks in power at timepoints around 0.2s, 0.7s and 1.5s. These times coincide 

approximately with moments when peaks in very slow modulation (<4 Hz) occur, and could 

indicate the prosodic stress or emphasis pattern of the sentence.  

  This descriptive analysis suggests that the entire modulation spectrum (in this 

example) may be usefully divided into 3 regions. First, a narrow syllabic rate band at ~4 Hz. 

This carries strong temporal information related to syllable vowel nuclei (bold black box). 

Second, a band of slower (<4 Hz, dotted box) modulations that could correspond to the 

prosodic stress pattern of the utterance. Third, a band of faster (>4 Hz) modulations that are 

themselves modulated in power by the pattern of slow modulations. To formally assess the 

presence of  'modulation rate bands', the 24 modulation channels were subjected to a PCA 

analysis. Moreover, since it had previously been determined that the frequency spectrum 

could be represented by 5 spectral bands, this PCA analysis was conducted for each spectral 

band. That is, each speech sample was first spectrally-filtered into 5 spectral bands. The 

Hilbert envelope was then obtained for each spectral band, and this envelope was further 

filtered into 24 logarithmically-spaced modulation rate channels to give a high-dimensional 5 

(spectral band) x 24 (modulation rate) channel representation for each speech sample. The 
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aim of the PCA procedure was to reduce this large number of 24 modulation channels into a 

smaller number of non-redundant modulation rate bands. 

 

4.4.2 PROBLEMS WITH LOW INTER-CORRELATION BETWEEN CHANNELS 

 

 The PCA method relies on the underlying correlation structure of the data. Hence, if 

the variables have a generally low correlation, the method will not produce a strong first 

principal component, and higher components may be unreliable or not meaningful. In the 5 x 

24 representation of the speech envelope, the correlation of each modulation rate channel 

with the other channels was in fact exceptionally low, with an average correlation coefficient 

of <0.1 (see bottom left plot of Figure 4.5). This low correlation occurred because the 

modulation patterns were effectively sinusoids at different rates whose phases were not 

aligned. Therefore, when a PCA was performed on this uncorrelated data, indistinct results 

were obtained. For example, the total variance explained by the top 5 PCA components was 

only around 35%, compared to 65% for the earlier Spectral PCA.  

 To overcome the issue of low inter-channel correlation stemming from different 

temporal rates, only the power in each modulation channel was used for the PCA analysis
13

. 

By analogy to the distinction between envelope and fine structure, using the power 

(envelope) only meant that differences in frequency (fine structure) were discarded. Figure 

4.5 shows an example of the original whole modulators (top left) and modulator power only 

(right top) for a 24-modulation-channel decomposition of the envelope. In the whole 

modulator plot, rate differences between modulation channels are evident in the red-blue 

striation patterns which graduate from broad to narrow as the modulation rate increases (up 

on the y-axis). In the power-only plot, these rate-dependent striations are no longer present, 

but the gross activation patterns across the channels are maintained. As expected, using the 

power-only substantially increased the correlation of each modulation channel with other 

modulation channels (now typically between 0.3-0.5), indicating that a PCA analysis would 

now be more meaningful. The bottom right-hand plot of Figure 4.5 shows the average inter-

channel correlations obtained across all samples and speakers when only the modulator 

power was used (showing spectral band 3 as an example). 

                                                 
13

 A "rate-normalisation" procedure was also developed as an alternative to using only the power of each 

modulation channel. Using these rate-normalised modulators for the PCA analysis yielded very similar results 

to using the power only. The details of the rate-normalisation procedure are reported in Appendix 4.5, but here 

the focus is on the results of using modulation power only. 
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Figure 4.5. (Top row) Example of the 24-channel modulation landscape for a single 5s sample of speech. 

The z-scored whole modulators are shown on the left, and the z-scored modulator power only is shown on 

the right, for spectral band 3 (700-1750 Hz). (Bottom row) Grand mean channel inter-correlations 

averaged over all samples and speakers, for spectral band 3 (700-1750 Hz). The individual coloured lines 

show the correlation of each modulation rate channel with all the other channels. The dark black line 

shows the grand mean inter-correlation, averaged across all modulation channels. Inter-correlations 

calculated with the whole modulator are shown on the left, and with the modulator power only on the 

right.  
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4.4.3 MODULATION RATE PCA (POWER ONLY): COMPONENT LOADINGS  

 

 As before, a separate PCA was conducted for each nursery rhyme sample and each 

speaker, taking the individual timepoints as observations and the power of the 24 modulation 

rate channels as variables
14

. The loading patterns for each of the resulting 24 principal 

components was then rectified (absolute-valued), and averaged over all 264 samples. This 

was repeated for each of the 5 spectral bands, and the results from each band were analysed 

separately. Recall that the aim of the analysis was to define underlying patterns of 

redundancy by noting which groups of modulation channels (variables) load in a similar 

fashion onto the extracted PCA components.  

 In this analysis, only the top 3 principal components were considered, since these 

already accounted cumulatively for 60-80% of the total variance across the 6 speakers. As 

before for the spectral PCA, two criteria were used in identifying 'modulation rate bands'. 

These criteria were modified to reflect that here, only 3 principal components were being 

considered rather than 5 principal components. First, at least 1 of the 3 principal components 

should show a distinct peak within that modulation rate band. Second, at least 1 of the 3 

principal components should show troughs near the upper and lower boundaries of that 

modulation rate band.  

 The mean rectified loading patterns for principal components 1 to 3 are shown in 

Figure 4.6, where each spectral band is shown in a separate subplot. From visual inspection 

of the subplots in Figure 4.6, principal component 1 loaded broadly across all the modulation 

frequencies, and did not show any clear troughs. However, the rectified loading patterns of 

principal components 2 and 3 were more informative. Across the 5 spectral bands, both these 

components showed clear troughs around 12 Hz, with component 2 showing slightly earlier 

troughs ~8-9 Hz, and component 3 showing a slightly later troughs ~15 Hz (note that the x-

axis of the plots is logarithmic). In addition, for spectral bands 3 to 5, there was an additional 

slower trough in component 3 occurring around 2.5 Hz. All the troughs described in this 

paragraph are marked with red dots in Figure 4.6. This pattern of troughs suggests that there 

are 3 modulation rate bands, whose boundaries are located ~2.5 Hz and ~12 Hz. These 

boundaries are marked with vertical dotted lines in the plots.  

  

                                                 
14

 Note that the signal that was filtered through the 24 modulation rate channels was the original waveform 

(filtered into 5 spectral bands), and not the PCA component scores from the Spectral PCA analysis. 
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Figure 4.6. Mean rectified loading patterns for principal components 1-3, averaged over 44 rhymes and 6 speakers. The results for each 

spectral band are shown in a separate subplot. The red dots mark troughs in loading occurring at the boundaries between modulation rate 

bands. 
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 For spectral bands 3, 4 & 5, the criteria regarding the identification of modulation 

rates bands were met. Each of the 3 modulation rate bands in these spectral bands contained 

at least 1 peak, and the boundaries between the bands were marked by at least 1 trough. 

However, the criteria were not met for spectral bands 1 & 2, where there was no distinct 

trough boundary at ~2.5 Hz. Nonetheless, for ease of future computation, a standard 

representation of 3 modulation rate bands was decided upon for all the 5 spectral bands. This 

would result in a balanced 5 (spectral band)  x 3 (modulation rate band) representation of the 

envelope, rather than an unbalanced 2 x 2 + 2 x 3 representation.   

 Table 4.2 summarises the 3 modulation rate bands, and their possible association with 

3 types of linguistic units - stress feet, syllables and phonemes. The close correspondence of 

the three modulation rate bands to neural oscillatory bands in the delta, theta/alpha and 

beta/gamma range is also noted in the table. Consistent with multi-time resolution models of 

speech processing (e.g. Giraud & Poeppel, 2012), the speech information on these 3 different 

timescales (stress, syllable and phoneme) could modulate their corresponding neural 

oscillatory bands independently, generating 3 separate neural streams of information coding.  

 

Table 4.2. Modulation rate bands indentified from component loading patterns 

Linguistic Unit 

Main PCA 

Component 

Loading 

Modulation Rate 

Band (Hz) and 

Geometric CF 

Corresponding Neural 

Oscillatory Band (Hz) 

Prosodic Stress 

(Mod band 1) 
2 & 3 

0.9 - 2.5 

(1.4) 
Delta : 1-3 

Syllable 

(Mod band 2) 
1 & 3 

2.5 - 12 

(5.5) 

Theta : 3-7 

Alpha : 7-12 

Phoneme 

(Mod band 3) 
2 & 3 

12 - 40.0 

(21.9) 

Beta : 12-25 

Gamma : 25-80 
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 There is also a close correspondence between the current PCA-defined modulation 

rate bands, and the modulation statistics reported by Greenberg et al (2003) based on the 

SWITCHBOARD speech corpus. According to Greenberg et al (2003), the modulation 

spectrum shows a positive skew (i.e. sharp fall-off at slower modulation rates, slow fall-off at 

faster modulation rates) with a peak around 5 Hz representing the dominance of syllable-rate 

modulations. This pattern is shown in Figure 4.7, which is reproduced from Greenberg et al 

(2003). In the current 

analysis, the bandwidths 

of the modulation rate 

bands increase 

logarithmically, mirroring 

the slow exponential fall-

off (positive skew) of 

Greenberg's modulation 

spectrum.  

 

Figure 4.7. Reproduced 

from Greenberg et al, 

2003. Syllable durations 

(top,(a)) and modulation 

spectrum (bottom, (b)) for 

the SWITCHBOARD 

speech corpus. 

 

 The proposed 'Syllable' modulation rate band has a geometric centre frequency of 5.5 

Hz, which is close to the peak of Greenberg's modulation spectrum (5 Hz). Moreover, the 

Syllable rate band also contains the highest RMS modulation power (see Appendix 4.6), 

which is consistent with Greenberg's view of 'syllable dominance' in the modulation 

spectrum. According to Greenberg et al (2003), modulation rates under 5 Hz correspond to 

heavily stressed syllables. Conversely, shorter, unstressed syllables are represented in the 

spectrum up to around 15 Hz (the end of the positive 'tail'). In their analysis, very few 

syllables had durations consistent with a modulation rate of under 2 Hz, or over 15 Hz. These 
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duration limits for 'normal' syllables correspond closely to the proposed boundaries for the 

Syllable rate band of 2.5-12 Hz. In addition to this, the Syllable band of 2.5-12 Hz is also 

similar to the 4-16 Hz
15

 range of modulation frequencies identified by Drullman et al (1994a, 

1994b) as being the most important for speech intelligibility (see Section 1.9 of the 

Introduction). Hence, the characteristics of the Syllable rate band appear to be well in 

accordance with previous research.  

 Pertaining to the proposed 'Stress' rate band (0.9-2.5 Hz), the association of prosodic 

stress with modulations in this range is supported by the observation that the average duration 

of stress feet in the English language is ~500 ms or 2 Hz (Dauer, 1983).  

 Regarding the modulation statistics of linguistic units shorter than the syllable (i.e. 

>12 Hz in this analysis), Rosen (1992) noted that fluctuations in the speech envelope (defined 

as between 2-50 Hz) can be associated with segmental cues to manner of articulation and 

voicing. For example, the noise burst following the release of a stop consonant typically gives 

rise to a sharp energy peak lasting just a few tens of milliseconds (which would activate the 

'Phoneme' rate band) . However, not all phoneme-related activity in speech occurs on such 

short timescales. Vowels, sonorant consonants like /m/ and /l/, and even fricatives like /s/ can 

produce fairly long-lasting modulations on the order of hundreds of milliseconds (which 

could activate the Syllable rate band). Consequently, although the third rate band is 

ostensibly named 'Phoneme rate', it is most likely to reflect the activity associated with stop 

consonants, and other similarly brief speech sounds. 

 Finally, it should also be noted that there is significant similarity between the 3 

modulation rate bands identified here, and the original 5 tiers of the AMPH hierarchy. Recall 

that the AMPH hierarchy consisted of Slow, Stress, Syllable, Subbeat and Fast tiers. The 

typical modulation rates for these tiers are shown in Table 4.3, compared alongside the 

current 3 modulation tiers. As may be observed from the table, the boundaries for the AMPH 

Stress tier and the current Stress modulation rate band are virtually identical, and the 

boundaries for the AMPH Fast tier and the Phoneme modulation rate band are also quite 

similar. The major difference lies in the current Syllable modulation rate band, which 

encompasses both the original AMPH Syllable and Subbeat tiers. This means that 

modulations in the current Syllable band will be faster on average than the modulations in the 

                                                 
15

Recall that the low- and high-pass filter cutoffs used by Drullman et al (1994a, 1994b) increased 

logarithmically (e.g. 2, 4, 8, 16 Hz). Therefore the 4-16 Hz range is only approximate. 
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original AMPH Syllable tier. However, overall there are strong similarities between the 

theoretically-proposed AMPH hierarchy, and the statistically-inferred modulation rate bands. 

Importantly, the two key tiers used for computing rhythm in the AMPH model (Stress and 

Syllable) are still present as new modulation bands (which was not guaranteed in the PCA 

analysis). This supports the view that the speech information at these rates is important and 

dominant in the speech signal, since they emerge spontaneously from a data-driven statistical 

analysis. 

 

Table 4.3. Comparison between AMPH tiers and current modulation rate bands 

AMPH Hierarchy Tier Modulation Rate Band 

Slow (0.5-0.8 Hz) N.A. 

Stress (0.8-2.3 Hz) Stress (0.9 - 2.5 Hz) 

Syllable (2.3-7 Hz) 

Syllable (2.5 - 12 Hz) 

Subbeat (7-20 Hz) 

Fast (20 - 50 Hz) Phoneme (12 - 40 Hz) 

 

 

  



134 

 

4.5 THE NEW 5 X 3 SPECTRO-TEMPORAL REPRESENTATION OF THE 

AMPLITUDE ENVELOPE 

 

 In summary, the original set of 29 cochlear (spectral) channels has now been reduced 

to 5 broad spectral bands. The original set of 24 modulation rate channels has been reduced to 

3 modulation rate bands, these will now form a new 3-tier AM hierarchy. This 5 x 3 structure 

is a parsimonious representation of the dominant spectro-temporal modulation patterns in the 

speech envelope, and forms the basis of the new S-AMPH model.  

 Figure 4.8 shows an example of the 5 x 3 envelope structure obtained for the nursery 

rhyme sentence "Baa baa black sheep have you any wool? Yes sir, yes sir, three bags full". In 

the figure, the 5 spectral bands are shown in rows, and the 3 modulation rate bands are 

overlaid in colored lines. The red line shows the slowest prosodic 'Stress' band (0.5-2.5 Hz), 

the blue line shows the 'Syllable' band (2.5-12 Hz) and green line shows the 'Phoneme' band 

(12-40 Hz). The yellow shaded sections show the sub-band filtered speech signal. The panel 

beneath plots the original speech waveform in black.  

 From the figure, it may be observed that the modulation patterns for each spectral 

band are different. This is to be expected if each spectral band carries non-redundant (unique) 

information.  
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Figure 4.8. Example of the new 5x3 AM hierarchy used for the S-AMPH model. Rows show the 5 spectral bands, coloured lines indicate the 

Stress (red), Syllable (blue) and Phoneme (green) rate modulators. The original waveform is shown in black below, and the filtered signal for 

each spectral band is shown in yellow. 

Spectral band 5 

(3900-7250 Hz) 

Spectral band 4 

(1750-3900 Hz) 

Spectral band 3 

(700-1750 Hz) 

Spectral band 2 

(300-700 Hz) 

Spectral band 1 

(100-300 Hz) 

 

"Baa   baa  black    sheep   have you any   wool?                        Yes     sir           yes       sir            three  bags        full"  
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4.6 CHAPTER SUMMARY & DISCUSSION  

 

 In this chapter, an attempt was made to derive a parsimonious, low-dimensional 

representation of the speech envelope to use as the spectro-temporal representation 

underlying the new S-AMPH model. To achieve this, PCA analyses were applied in the 

spectral and modulation rate domains. Component loading patterns were derived and 

analysed for evidence of channel 'clustering' (i.e. peaks) and boundaries indicating the 

transition between different spectral/modulation bands (i.e. troughs). Based on these analyses, 

5 spectral bands and 3 modulation rate bands were identified. 

 While standard criteria were used to evaluate the evidence for 'banding' (e.g. number 

of peaks and troughs), this method still involved subjective interpretation. For example, in the 

modulation rate analysis, the troughs indicating the Syllable/Phoneme boundary differed in 

location across principal components, and across spectral bands. Therefore, the 'best fit' for 

the final boundary had to be determined by eye, in a subjective manner. The presence of such 

subjectivity necessitates caution when interpreting the 'bands' derived from these analyses. 

For example, the boundaries between the various bands should not be viewed as being strict 

cut-offs (i.e. Syllable information is only ever contained within 2.5-12 Hz), but as 

approximate boundaries with a degree of tolerance for error. Moreover, if a different criteria 

was set for identifying these bands, a different number of bands may have been identified, or 

the boundaries may have been slightly different. 

 Therefore, in this thesis, it is not claimed that these 5 spectral bands and 3 modulation 

rate bands correspond to any physiological mechanism, either in speech production or 

perception (e.g. in the way that the cochlear channels are actual physiological mechanisms in 

auditory perception). Rather, these bands are a convenient, low-dimensional, less-redundant  

representation of the 'dominant' spectro-temporal patterns in speech. This basic 5 x 3 

structure will allow the S-AMPH model to provide a richer representation of speech rhythm 

(as compared to the original wholeband AMPH model) without creating unreasonable 

computational demands (e.g. by using a high-dimensional 29 x 24 representation). 
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5    NEW PROSODIC INDICES 
 

 Having derived a new 5 x 3 spectro-temporal representation for the speech envelope 

in the previous chapter, the next task is to adapt the prosodic indices used in the original 

wholeband AMPH model to this more complex representation of envelope structure. Recall 

that the original AMPH model used 'Syllable' Tier peaks to indicate beat location, and 

computed the prosodic strength of each beat according to the concurrent 'Stress' tier phase, 

following a Gaussian probability density function. In this revised S-AMPH model, there are 

now 5 'Syllable' bands and 5 'Stress' bands (from each spectral band). This means that for 

each particular syllable in the speech signal, there may be up to 5 possible markers delivered 

by the computational scheme, i.e. 5 correlates of its vowel location, and likewise 5 possible 

correlates of its prosodic strength. In the following section, the principles for computing key 

prosodic markers and indices based on the 5 x 3 S-AMPH representation are set out. These 

markers and indices are : (1) the location of syllable vowel nuclei; (2) the assignment of 

syllable prominence using the new prosodic strength index (PSI). To develop and fine-tune 

these new indices, a smaller stress-annotated stimulus set was used.  

 

5.1 SPEECH MATERIAL USED FOR DEVELOPING PROSODIC INDICES 

 

 The following two sets of spoken material were used to develop and fine-tune the 

prosodic indices used in the revised S-AMPH model. These same materials were also used to 

evaluate the effectiveness of the revised S-AMPH model, the results of which are detailed in 

Chapter 6. Both sets of spoken material were made up of nursery rhyme sentences. 

Consequently, both sets of material had a strong underlying metrical structure. One set 

(Sample Set A) was generated by asking speakers to repeat a single nursery rhyme sentence 

using different prosodic templates. The second set (Sample Set B) was 20 nursery rhyme 

sentences that were freely produced (a subset of the 44 nursery rhymes used to derive the 5 x 

3 structure in Chapter 4). While the first set of utterances was metronome-timed and perfectly 

metrically-regular, the second set of utterances contained variations in metrical pattern within 

the same sentence, as well as across speakers. 
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5.1.1 METRICALLY-REGULAR (METRONOME-TIMED) SPEECH (SAMPLE SET A) 

 

 This stimulus set comprised 9 metrically-controlled, metronome-timed variations of 

the same nursery rhyme sentence. 3 native English speakers (1 M, 2 F) produced each of the 

9 metrical variations, giving 27 sentences in total. The nursery rhyme sentence was "Jack and 

Jill went up the hill to fetch a pail of water, Jack fell down and broke his crown, and Jill 

came tumbling after". This sentence was spoken in time to a 3 Hz metronome beat, and 

speakers deliberately changed the syllable stress pattern to fit 9 different prosodic 'foot' 

patterns. The first two patterns conformed to a Duple meter, or 2 syllables per foot (Trochaic 

(Sw) and Iambic (wS)). The next three patterns followed a Triple meter (Dactyl (Sww), 

Amphibrach (wSw) and Anapest (wwS)). The last 4 patterns followed a Quadruple meter 

(Primus paeon (Swww), Secondus paeon (wSww), Tertius paeon (wwSw) and Quartus paeon 

(wwwS)). The stress patterns for each metrical variation are shown in Table 5.1 below.  

 

Table 5.1. Different metrical stress patterns for the metronome-timed sentences. Stressed 

syllables are shown in CAPS. 

Syllable Stress Pattern (CAPS = stressed) Prosodic Foot  

JACK and JILL went UP the HILL to FETCH a PAIL of WAter... Trochaic (Sw) 

jack AND jill WENT up THE hill TO fetch A pail OF waTER... Iambic (wS) 

JACK and jill WENT up the HILL to fetch A pail of WAter... Dactyl (Sww) 

jack AND jill went UP the hill TO fetch a PAIL of waTER... Amphibrach (wSw) 

jack and JILL went up THE hill to FETCH a pail OF water... Anapest (wwS) 

JACK and jill went UP the hill to FETCH a pail of WAter... Primus paeon (Swww) 

jack AND jill went up THE hill to fetch A pail of waTER... Secondus paeon (wSww) 

jack and JILL went up the HILL to fetch a PAIL of water... Tertius paeon (wwSw) 

jack and jill WENT up the hill TO fetch a pail OF water... Quartus paeon (wwwS) 
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 The spoken material was kept identical even though not all the stress patterns fit the 

semantic content of the sentence naturally (for example, function words like 'the' or 'a' are not 

normally stressed). In view of this semantic-prosodic mismatch, and also because some 

prosodic patterns were simply more difficult to produce than others, speakers produced each 

sentence many times until they had 'learned' the pattern and were able to produce it without 

error.  

 While the utterances produced by this metrical manipulation were unnatural, they had 

several important properties. First, any differences detected by the model would be solely 

attributed to changes in prosody rather than phonological content. Second, the metrical 

manipulation allowed rare prosodic foot patterns to be included in the investigation, which 

would otherwise be difficult to find in real speech. Finally, since the exact metrical pattern of 

the utterances was known a-priori, the results of metrical rhythm detection by the model 

could be scored against an objective standard. The only additional source of error would be 

how accurate each speaker was in producing that metrical pattern, and this error was 

minimised by allowing the speakers to practice.  

 In freely-produced (untimed) speech, the actual prosodic stress pattern of each 

utterance is not known a-priori (i.e. speakers may not be using the same prosodic template, or 

may choose to deviate from a known template), hence the produced prosodic stress pattern 

must be annotated afterwards by a trained listener. Therefore, not only are the prosodic 

patterns in untimed speech irregular, but the subjective process of stress assignment by a 

listener also introduces significant error. For the purposes of evaluating the effectiveness of a 

model, therefore, un-timed speech is not the ideal material because one cannot be sure what 

proportion of 'errors' are due to a failure of the model, or to one of the other sources of error 

mentioned. Hence, the artificial metronome sentences acted as an important 'positive control', 

while the freely-produced sentences used in Sample Set B acted as a 'reality check'. 

 

5.1.2 FREELY-PRODUCED UNTIMED SPEECH (SAMPLE SET B) 

 This selected corpus of 20 English children's nursery rhyme sentences was an 

annotated subset of the larger original set of 44 nursery rhymes that had been used to derive 

the statistics for the 5 x 3 spectro-temporal representation of the envelope in Chapter 4. 6 

native British English speakers (all female) contributed spoken recordings of each of these 

nursery rhymes. 10 of the nursery rhymes had a dominant duple-beat rhythmic meter, while 
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the other 10 had a dominant triple-beat rhythmic meter. A decision was made not to assign a 

more specific prosodic foot type (such as trochee or iamb) to these nursery rhymes, since this 

would involve a degree of subjectivity, and the sentences themselves often comprised a 

mixture of different types of feet. Table 5.2 lists the 20 selected nursery rhymes and their 

dominant rhythmic meter (duple or triple).  

 

Table 5.2. List of 20 nursery rhymes and their rhythmic meter 

Nursery Rhyme Rhythmic Meter 

Old MacDonald Had a Farm Duple 

Mary Had a Little Lamb Duple 

Polly Put the Kettle On Duple 

Yankee Doodle Duple 

Peter Peter Pumpkin Eater Duple 

Mary Mary Quite Contrary Duple 

Simple Simon Met a Pieman Duple 

Lucy Lockett Duple 

Cobbler Cobbler Mend My Shoe Duple 

Peter Piper Duple 

 

Little Miss Muffett Triple 

Little Jack Horner Triple 

Little Boy Blue Triple 

Curly Locks Triple 

To Market  Triple 

Pussycat Pussycat Triple 

Ladybird Ladybird Triple 

There Was An Old Lady Triple 

Two Cats of Kilkenny Triple 

Lavender's Blue Triple 
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 Since many of these nursery rhymes are often sung to children in familiar folk tunes, 

the rhythmic meter was determined with reference to both the musical time signature for the 

sung rhyme (where available), and by poetic scansion. The meter is the fundamental 

repeating pattern of beats that corresponds to the poetic foot. In practice, finding the meter 

involves identifying accented (stressed) beats and counting the number of beats until the next 

accent (MacPherson, 1930; Scholes, 1977). A 'duple' meter (foot length of 2) was assigned 

when the time signature of the musical piece indicated 2 or 4 beats per bar (i.e. 2/4 or 4/4), 

and when the dominant prosodic feet were trochees ('S-w') or iambs ('w-S'). A 'triple' meter 

(foot length of 3) was assigned when the time signature of the musical piece indicated 3 beats 

per bar (i.e. 3/4), or when the dominant prosodic feet were dactyls ('S-w-w'), amphibrachs 

('w-S-w'), or anapests ('w-w-S').  

 Since each nursery rhyme was different in length from the others, only the first 24 

syllables from the first line of each rhyme were used in the analysis. This was done to 

standardise the amount of spoken material being compared between rhythmic conditions. The 

full list of sentences is shown in Appendix 5.1.  

 As these sentences were spontaneously uttered by each speaker, the produced 

prosodic patterns varied from sentence to sentence and from speaker to speaker. To ascertain 

the actual stress patterns that were produced, the nursery rhyme sentences were manually 

stress-transcribed by a female native English speaker with formal training in Linguistics (not 

the author). Stress transcription was done by listening to each sentence carefully, and judging 

whether each syllable sounded stressed or unstressed. The hypotheses of the current study 

(i.e. duple/triple beat distinction) were not known to the individual doing the transcription so 

that her judgments would be based on the acoustic patterns of each sentence only.  
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5.2 LOCATING SYLLABLE VOWEL NUCLEI IN THE ENVELOPE 

 

5.2.1 SYLLABLE VOWEL NUCLEI  CORRESPOND TO 'SYLLABLE' MODULATOR 

PEAKS 
 

 

 In the original AMPH model, peaks in the 'Syllable' modulator tier had simply been 

used as temporal markers to locate the presence of syllable beats. Arguably, taking slightly 

earlier or later points in the oscillatory cycle (i.e. before or after the peak) would have 

sufficed for the same purpose. No attempt was made to link this acoustic landmark to a 

specific linguistic feature. However, given that peaks generally indicate prominent or 

significant events, it is possible that these landmarks in the modulation landscape may in fact 

correspond to perceptually salient segments of speech.  

 Peaks in the 'Syllable' tier modulator generally occur in the middle of a spoken 

syllable, and correspond roughly to the point of highest local energy at the vowel nuclei of 

syllables. Vowels also tend to occur in the middle of syllables (with a simple C-V-C 

structure), and generally carry the greatest energy in the signal because during vowel 

phonation the vocal tract is most open. In fact, it may not be unreasonable to propose that 

listeners’ perceptual experience of syllables is in fact derived from these prominent energy 

peaks in the speech signal. To test if syllable vowel nuclei did indeed correspond to peaks in 

the 'Syllable' tier of the new S-AMPH hierarchy, the two sets of speech samples were 

manually annotated to mark the mid-points
16

 of their syllable vowel nuclei. The 'Syllable' tier 

phase value at each of these vowel locations was then determined. It was expected that vowel 

nuclei should be associated with Syllable modulator phase values of close to 0 pi radians (i.e. 

the oscillatory peak).   

 Figure 5.1 shows the distribution of syllable vowel nuclei with respect to the phase of 

the S-AMPH Syllable modulator, for metronome-timed (left) and untimed (right) speech 

samples, averaged over all speakers. The Syllable phase distribution was computed for each 

spectral band, and the average percentages over all 5 bands are shown. The coloured lines 

indicate sentences with different prosodic meter (i.e. different number of syllables per foot). 

                                                 
16

 Mid-points were used rather than onsets (associated with p-centres) because the mid-points of the vowel 

nuclei were higher in energy than the onsets, and therefore should correspond better to the peak in energy over 

the entire syllable. 
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For the metronome-timed sentences (left), these lines correspond to the averages over 

sentences with duple, triple or quadruple meter respectively (i.e. for duple meter, this was the 

average of the trochaic and iambic sentences). For the freely-produced sentences (right), 

averages were taken over the 10 duple meter and 10 triple meter sentences respectively. 

 

Figure 5.1. Distribution of actual measured vowel nuclei against the phase of the Syllable 

tier modulator. LEFT : Metronome Speech; RIGHT : Freely-produced speech. The bold 

curves beneath each plot show the oscillatory shape corresponding to the phase values on the 

x-axis. 

  (a) Metronome-timed Speech       (b) Freely-produced speech  

  

 For the metronome speech (left plot), all of the vowel nuclei occurred within a phase 

zone of -π/2 to π /2 radian of the Syllable modulator (i.e. near the peak of the oscillation, 

yellow shaded region), and no vowel nuclei occurred outside this phase zone. Although only 

~30% of vowel nuclei coincided exactly with the Syllable tier modulator peak maxima (i.e. 0 

π radians), all of the remaining vowel nuclei were distributed within ± π/2 radian of this 

Syllable peak phase value. If the geometric mean centre frequency of the Syllable band is 

considered (5.5 Hz), this tolerance of ± π/2 radian about the peak corresponds to a time 

window of ± 45 ms. There was very little difference in the distribution pattern between duple, 

triple and quadruple meter sentences. This was not surprising given that the phonological 

content of the metronome sentences was identical.  
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 For the freely-produced speech (right plot), the vast majority of vowel nuclei again 

fell within +/- π/2 radian of the Syllable peak. However, this distribution pattern had a wider 

base than that of metronome-timed speech, indicating a slightly larger variance in the 

distribution of vowel nuclei with respect to Syllable modulation phase. This was expected, 

given that these sentences were not uttered to a strict timing. Nonetheless, for both speech 

sample sets, the vast majority of vowel nuclei were located at or in close proximity to the 

peak of the Syllable tier modulator, and virtually no syllable nuclei occurred at trough regions 

of the Syllable tier modulator. Therefore, peaks in Syllable modulator do indeed correspond 

well to the occurrence of syllable vowel nuclei, both in metronome-timed and in un-timed 

speech.  

 

5.2.2 SYLLABLE PEAK DETECTION & SELECTION USING 5 SPECTRAL BANDS 

 

 In the previous section, it was established that peaks in the ‘Syllable’ tier of the AM 

hierarchy are good proxy markers for syllable vowel nuclei. Here, the procedure for 

identifying syllable vowel nuclei using the 5 Syllable modulators in the S-AMPH model is 

described. There are two parts to the procedure : (1) peak detection, followed by (2) peak 

selection. In the peak detection step, all possible peaks that could correspond to syllable 

vowel nuclei across the 5 spectral bands are identified, forming a large pool of 'candidate 

peaks'. In the peak selection process, this large pool of candidate peak is systematically 

evaluated to identify the most likely correlates of syllable vowel nuclei, and to remove any 

possible duplicates of the same vowel nucleus. 

 

5.2.2.1  Syllable Peak Detection Procedure 

 Prior to the peak-detection procedure, the Syllable modulator in each spectral band 

was z-score standardised to ensure that the mean of all its values would be 0, and the standard 

deviation equal to 1. This standardisation would allow a uniform minimum peak height 

criterion (+0.5 standard deviations) to be applied across all the samples. Next, the speaking 

rate for each sample was estimated. The estimate of the speaking rate was used to set the 

minimum peak-to-peak spacing criterion for each sample. Since the speaking rate varied 

greatly from sample to sample, it was important that this peak-to-peak distance should also 



145 

 

vary according to speaking rate. Otherwise, syllable peaks might be missed if the set distance 

was too large, or spurious peaks included if the distance was too small.  

 To estimate the syllable speaking rate for each sample, a Fourier analysis was applied 

to the Syllable tier to determine the single modulation frequency (rate) with the highest 

power. A value of 60% of the period of this strongest rate was used as the minimum peak-to-

peak distance for each sample. For example, if the estimated syllable speaking rate was 3 Hz, 

the minimum peak-to-peak distance was 0.6 x (1000/3) = 200 ms. Once these parameters had 

been established, Matlab's peak-detection algorithm was used to detect all the Syllable peaks 

in the 5 spectral bands that met the criteria (i.e. min peak height and min peak distance). This 

resulted in a large pool of candidate peaks across the 5 spectral bands.  

 

5.2.2.2  Syllable Peak Selection Procedure 

 Next, a 2-step selection process was applied to this pool of candidate peaks, to select 

those deemed to correspond to syllable vowel nuclei. The two major parameters used in this 

2-step selection process were : (1) the relative power of the spectral band that the peak was 

located in; and (2) the temporal proximity of the peak to other peaks in other spectral bands.  

 

Step 1 : Ranking spectral bands by power 

 Power was the first parameter to be considered because vowels are voiced, and voiced 

sections of speech have higher power than unvoiced sections of speech. Therefore, spectral 

bands with higher power should also be more likely to contain the energy (modulation) peaks 

associated with voiced vowels. Therefore, in the first step of the selection procedure, the total 

RMS power of each spectral band was determined, and the 3 spectral bands with the highest 

RMS power were identified, forming the 'primary band' (highest power), 'secondary band' 

(2nd highest power) and 'tertiary band' (3rd highest power). Only the peaks arising from these 

primary, secondary and tertiary spectral bands were retained for further consideration, all 

other peaks were discarded. Note that this process of power ranking was done individually 

for each speaker and speech sample, to allow for variations across speakers and conditions. 

 Since the primary band contained the most vowel energy (i.e. highest power), all the 

peaks arising from the primary band were automatically selected, and deemed to correspond 

to unique syllable vowel nuclei. However, it was possible that some syllable vowel nuclei had 
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a lower or higher frequency than that of the primary band. In this case, they would not be 

represented in the primary band, but would appear in either the secondary or tertiary band, 

and would need to be identified in these other bands. However, the majority of peaks in the 

secondary or tertiary bands would arise from syllables that already had a vowel correlate in 

the primary band, and would therefore be redundancies (in the sense that they belong to the 

same syllable, not in the sense that they contain identical information, the definition used 

earlier in the PCA analyses). In order to distinguish between peaks arising from real 'outlying' 

syllable vowel nuclei, and peaks corresponding to redundancies, the second selection step 

used a criterion of temporal proximity. 

 

Step 2 : Cross-band peak matching by temporal proximity 

 For a typical syllable, its vowel nucleus should produce a peak in primary band, while 

its initial and final consonants may produce peaks in other bands, including the secondary or 

tertiary bands. These consonant-related peaks, although in different spectral bands, would 

occur close together in time to the vowel peak in the primary band because they belong to the 

same syllable. By this reasoning, any peaks in the secondary and tertiary bands that lay in 

close proximity to a peak in the primary band would be redundancies and should be 

discarded. On the other hand, an outlying syllable vowel nucleus would appear in either the 

secondary or tertiary bands (which had the next highest power), but not have a temporal 

correlate in the primary band. Therefore, after all the redundancies in the secondary and 

tertiary bands had been identified with respect to the primary band, any remaining peaks 

without a primary band correlate should correspond to genuine outlying syllable vowel 

nuclei.  

 In the procedure, peaks in the secondary band were compared to the primary band 

first. Any secondary band peak that lay within 0.5 syllable-lengths of a primary band peak 

(based on the estimated syllable rate for each sample) was treated as a redundancy and 

discarded. Any remaining secondary peaks without a primary band correlate were retained 

and added to the repertoire of selected primary band peaks. Next, peaks in the tertiary band 

were compared to peaks in the primary band (including added non-redundant peaks from the 

secondary band). Again, any tertiary band peaks that lay within 0.5 syllable-lengths of a 

primary/non-redundant secondary band peak were treated as redundancies and discarded. 

Any remaining tertiary band peaks without a temporal correlate were retained and added to 



147 

 

the already-selected repertoire of primary and secondary band peaks. This final set of selected 

primary, secondary and tertiary band peaks formed the final set of Syllable peaks deemed to 

correspond to unique syllable vowel nuclei. 

 To double-check that the final selection of peaks correctly reflected the actual spoken 

syllable pattern, these peak sequences for each sample were all validated by ear during the 

method development process. To do this, the sequence of peak timings was converted into a 

binary 'temporal mask' (i.e. peak = 1, no peak = 0). These temporal masks were then used to 

vocode the sentences in a single-channel tone vocoder, effectively converting each sentence 

into a sequence of tone pulses, where each pulse corresponded to a detected syllable 'beat' 

(vowel nucleus). The parameters used in peak detection (i.e. 0.5 standard deviation minimum 

peak height, 60% syllable rate minimum peak-to-peak distance) were also manually fine-

tuned using this vocoding process. That is, the entire peak selection and detection process 

was re-run several times, each time using different peak detection parameters. The parameters 

that produced the most accurate syllable pattern (determined by ear) were used as the final 

settings in the S-AMPH model. 

 

5.2.2.3  Example of Syllable Peak Detection & Selection in Operation  

 An example of peak detection, followed by peak selection is shown in the top and 

bottom graphs of Figure 5.2 respectively, for a sample of trochaic metronome speech. In the 

top graph, the coloured dots indicate all the 'candidate peaks' that were detected across all 5 

spectral bands. The vertical dotted lines indicate the approximate timing of the metronome 

beats. From the figure, it may be observed that each syllable typically produces peaks in 3-5 

different spectral bands, corresponding to the mixture of vowel and consonant sounds within 

the syllable. Importantly, some spectral bands seemed to represent the vowel pattern better 

than other spectral bands.  

 For example, the peaks in spectral bands 1, 2 & 3 appeared to be reasonably well 

located near to the vowel nuclei of the syllables in the sentence. In contrast, spectral band 5 

showed clear non-vowel peaks corresponding to the affricate [tʃ] at the end of 'fetch', or the 

[dʒ] at the start of 'Jill' (highlighted in the dark blue boxes). It is also worth noting that no 

single band represented the vowel nuclei of all the syllables in the sentence (i.e. there were 

always 'missing' syllable vowels). For example, in spectral bands 2, 3 & 4, peaks were not 
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elicited for function words like 'the', 'to', 'a' or 'of' (yellow, green and light blue boxes 

respectively).  

 Moreover, although spectral band 1 detected all the 'syllable beats' in the utterance, 

the timing of these beats was not perfectly accurate. For example, assuming that the speaker 

was accurately synchonising the uttered syllables to the metronome beats, the band 1 peak for 

the syllable 'the' was delayed, whereas the peak for the syllable 'wa-' in 'water' was too early 

(red boxes). This illustrates the problem of using a single sub-band approach (as discussed in 

the preface to Part III) - not all the syllable vowels will be well-represented in any single 

frequency band. Therefore, it is important that more than one spectral band is used to 

determine the location of syllable vowel nuclei, as was done here.  

 Moreover, across different speakers and speaking conditions, the specific combination 

of spectral bands that best captured the syllable vowels also varied. For example, in this 

dataset, syllable peaks for the male speaker were commonly well-represented in spectral 

bands 1 & 2, whereas syllable peaks for female speakers were better represented using higher 

frequency spectral bands 3 or 4. This underlies the importance of being able to flexibly 

change which spectral bands are used to determine the location of syllable vowel nuclei, 

according to the nature of the speech sample itself, as was done here.  

 The bottom panel of Figure 5.2 shows the result of the peak selection process. In this 

example, spectral band 2 was used as the primary band. The unusually low-frequency vowel 

[oo] in the word 'to' (at ~2.5s) did not appear in spectral band 2, but was picked up and filled 

in by secondary spectral band 1. No additional vowels were spuriously added by tertiary 

spectral band 3, resulting in perfect identification of the 14 syllable vowel nuclei (beats) in 

the sentence.   
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Figure 5.2 (Top). Example of the Syllable modulators from each spectral band (rows) and 

candidate peaks (coloured dots) detected. The sample was a trochaic metronome-timed sentence. 

Coloured boxes highlight either missing peaks, or extraneous peaks that did not correspond to 

actual spoken syllables. The original waveform of the utterance is shown in the bottom panel. 

(Bottom) Results of peak selection from amongst the candidate peaks. The final set of selected 

peaks are shown as red dots. In this example, the three highest-power bands used for syllable 

selection were spectral band 2 (primary), band 1 (secondary) and band 3 (tertiary).  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 "Jack      and       Jill     went       up         the        hill         to         fet-ch    a           pail     of         wa      -ter" 

s band 5 

s band 4 

s band 3 

s band 2 

s band 1 
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5.3 ASSIGNING SYLLABLE PROMINENCE (NEW PROSODIC 

STRENGTH INDEX) 

 

5.3.1 DISTRIBUTION OF SYLLABLE VOWELS WITH RESPECT TO STRESS PHASE  

 

 The most important prosodic statistic used in the Stress Phase Code of the AMPH 

model was the instantaneous Stress phase corresponding to each Syllable peak. This was used 

to determine the prosodic prominence of the syllable. In the AMPH model, this Stress phase 

value was transformed into an indicator of prosodic prominence via a Gaussian probability 

density function (PDF). This PDF was an approximation, since the exact relationship between 

Stress phase and perceived prosodic prominence was unknown at the time when the AMPH 

model was developed. However, it was assumed that prosodically-prominent syllables would 

occur close to the peak of the Stress oscillatory cycle while prosodically-weak syllables 

would occur close to the trough of the Stress oscillatory cycle. Based on this assumption, the 

AMPH model identified 'Strong' and 'weak' syllables using the Stress phase at which they 

occurred. Here, this assumption is examined by looking at the actual distribution of syllables 

with respect to Stress phase. 

 In the AMPH model, the Stress oscillatory cycle is functionally equivalent to a 

prosodic stress foot (i.e. 'Stress cycle = Prosodic foot'). According to this view, prosodic 

meter is realised as the functional division of 'Stress phase space' into n regions, where n is 

the number of syllables in the prosodic foot. Each syllable in the foot therefore occupies a 

distinct Stress phase region, but each of these regions need not be equal in width. For 

example, for a duple meter pattern like the trochee ('S-w'), Stress phase should be divided 

into two (peak and trough) regions, with strong and weak syllables occurring in each region. 

For a triple meter pattern like the dactyl ('S-w-w'), Stress phase should now be divided into 

three regions, with the strong syllable occurring near the peak of the oscillation, and the two 

weak syllables occupying two adjacent but distinct regions near the trough of the oscillation. 

These predicted distribution patterns are investigated here.  

 Recall that in a previous analysis (Section 5.2.1), all the syllable vowel nuclei had 

been manually located in all the sentences. Here, the corresponding Stress modulator phase 

for each vowel nucleus was recorded. For ease of analysis, Stress phase was divided into 17 

equal bins between -π and π radian. The percentage of vowel nuclei falling into each phase 
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bin was then computed, resulting in a vowel-Stress phase distribution pattern. This phase 

distribution was computed for each spectral band, and then averaged over all 5 spectral 

bands, for all sentences (by meter) and speakers. The results are shown in Figure 5.3, for 

metronome-timed speech (left subplot) and untimed speech (right subplot). The coloured 

lines in each plot show the averages for the different prosodic meters.  

 

Figure 5.3. Phase distribution of syllable vowel nuclei with respect to Stress phase. The black 

bold line underneath each plot shows the equivalent oscillatory shape of the Stress modulator 

for each phase value. 

  (a) Metronome-timed Speech       (b) Freely-produced speech  

  

 

5.3.1.1 Metronome-Timed Speech (left subplot) 

 For duple meter sentences (left plot, red line), speakers clearly tended to utter 

syllables in two major Stress phase regions, producing two spikes in the distribution pattern. 

These occurred slightly before the Stress peak (-0.1π rad) for stressed vowels and at the 

Stress trough (pi radian) for unstressed vowels. The two red dots on the oscillation plot below 

the phase distribution represent these two phase regions, where strong or weak syllables 

occurred. This bi-modal distribution of vowel nuclei for duple meter sentences was exactly as 

predicted.   

Strong 

weak weak 

Strong 

weak weak 
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 For triple meter sentences (green line), speakers also showed a spike in the syllable 

distribution just before the Stress peak (-0.1π rad), corresponding to stressed vowels. 

However, now, there were two other distribution spikes occurring in the Stress trough region. 

These two spikes are circled in green on the plot, and occurred just before and just after the 

stress trough at 0.8π radian and -0.8π radian. The three green dots on the oscillation plot 

below the phase distribution represent these three distribution spikes. The drop in the height 

of the distribution spike at -0.1π rad is consistent with triple meter sentences having 

proportionately fewer stressed vs unstressed syllables than duple-meter sentences (i.e. 1:2 for 

triple vs 1:1 for duple). Therefore, the tri-modal distribution pattern of vowel nuclei for triple 

meter sentences was also exactly as previously predicted.  

 For the quadruple meter sentences (blue line) however, there was weak evidence that 

speakers were now dividing Stress phase into four distinct regions. Speakers continued to 

place vowel nuclei just before the Stress peak (-0.1π rad), corresponding to stressed vowels. 

The height of this central spike was, as expected, lower than for triple and duple meter 

sentences. However, at the trough phase regions, the distribution pattern did not show three 

distinct spikes as expected. Rather, syllable vowels were most concentrated around ± π radian 

(the Stress phase trough), and there were two symmetric 'shoulders' in the distribution pattern, 

centred around the Stress phase trough. This distribution pattern suggests that speakers were 

not timing the unstressed syllables as accurately for these quadruple-meter sentences. This 

led to a 'smeared' distribution pattern in the trough phase region, rather than the sharp spikes 

observed for duple and triple meter sentences. 

 Therefore, for duple and triple meter metronome-timed sentences, the distribution 

patterns of syllable vowels with respect to Stress phase was exactly as predicted, following 

the 'Stress cycle = Prosodic foot' hypothesis. However, for quadruple meter sentences, the 

predicted pattern did not emerge. This could be because speakers are poorer at controlling the 

timing of unstressed syllables (as compared to stressed syllables). Therefore, when more 

unstressed syllables occur in a series (i.e. longer prosodic feet), the timing of these syllables 

becomes more and more variable so that each unstressed syllable no longer occupies a fixed 

position with respect to Stress phase.  

 However, for all three types of meters, stressed and unstressed syllables occurred in 

completely different 'Strong' and 'weak' regions of Stress phase (with very few syllables 
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occurring at an 'intermediate' phase). This suggests that for metronome-timed speech, Stress 

phase will be a very useful index for discriminating stressed and unstressed syllables. 

 

5.3.1.2 Freely-Produced Speech (right subplot) 

 For untimed speech, the syllable vowel distribution patterns was much less well-

defined. Instead of sharp spikes, the distribution pattern was characterised by gentle rolling 

'hills'. That is, syllable vowels occurred at all phase values with a baseline percentage of 

around 5%. However, syllables were slightly more likely to occur at two Stress phase 

regions, where the percentage of syllable vowel occurrence rose to 7-8%. These two phase 

regions are indicated with red (duple meter) and green (triple meter) dots on the oscillation 

plot below the phase distribution graph, and described below.  

 First, for both duple and triple meter sentences, there was a major 'hill' in the 

distribution pattern just before the peak of the Stress modulator, at around -0.2π radians. For 

metronome-timed sentences, a major spike had also occurred in a similar phase region, and 

corresponded to strong stressed syllables.   

 The second hill in the distribution pattern for both duple and triple meter sentences 

occurred along the downward slope of the Stress cycle, around 0.5-0.7π radians. This hill was 

earlier for triple meter sentences (~0.5π radians) than for duple meter sentences (~0.7π 

radians), which was also the trend observed for metronome-timed speech 

 However, while only two regions of concentration were expected in the distribution 

for duple meter sentences, three regions were expected for triple-meter sentences, but only 

two were observed. Moreover, a significant proportion of syllables occurred outside these 

two phase regions for both duple and triple meter sentences
17

. This suggests that in untimed 

speech, speakers were not constraining the occurrence of syllables into different Stress phase 

regions as tightly as they did for metronome-timed speech. Rather, syllables were allowed to 

occur at all Stress phases, with only a slightly stronger tendency to occur in some phase 

regions than others (e.g. 'weak attractor' regions). Interestingly, there appeared to be the same 

number of these weak attractor phase regions (two) irrespective of whether the sentence was 

                                                 
17

 Note that this could also be because these sentences were not perfectly duple or triple metered (i.e. they 

included prosodic feet of other lengths as well). The phase regions for these prosodic feet of other lengths could 

have overlapped with those for the duple/triple meter, resulting in the appearance that syllables occurred at all 

phase values, rather than within well-defined boundaries.  
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duple- or triple-timed. Rather, the meter of the sentence was reflected in a slight phase-shift 

in the attractor regions (slightly earlier for triple meter).  

 Nonetheless, some distinction between 'Strong' and 'weak' phase regions was 

observed (the two 'hills'), and these regions were broadly similar to the Strong and weak 

phase regions observed for metronome-timed speech. This suggests that Stress phase may 

still be a useful index for whether syllables are strong or weak in untimed speech, although 

this will not be as sharply discriminatory as for metronome-timed speech. 

 

5.3.1.3 Conclusion  

 Therefore, the strong version of the 'Stress cycle = Prosodic foot' hypothesis, where 

each syllable in the foot occupies a distinctly different Stress phase region, only seems to 

hold for metronome-timed speech (and only for duple and triple meter sentences). In freely-

produced speech, the timing constraints on individual syllables do not appear to be strong 

enough to produce such sharp phase separations.  

 However, in both metronome-timed and untimed speech, there was evidence for two 

different 'Strong' and 'weak' phase regions, which could act as attractors for syllable 

occurrence (e.g. as also proposed by Cummins & Port, 1998). Therefore, the relative prosodic 

strength of syllables (Strong or weak) could still be inferred from their Stress phase of 

occurrence. In the next section, the new Prosodic Strength Index is developed on this basis. 
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5.3.2 THE NEW PROSODIC STRENGTH INDEX (PSI) 

 

 In the previous section, it was observed that the prosodic strength of a syllable 

('Strong' or 'weak') was related to the Stress phase region at which it occurred. Here, a new 

Prosodic Strength Index (PSI) is developed which converts a syllable's Stress phase of 

occurrence into a parametric measure of its prosodic prominence or strength.  

 In the metronome-timed sentences, 'Strong' syllables occurred within a Stress phase 

region of -0.4π to 0.2π radian, with the peak probability of occurrence at -0.1π  radian (see 

Figure 5.3 in the previous section). Conversely, 'weak' syllables were more widely-spaced, 

but tended to occur most frequently around ±π radian. Therefore, the PSI should have a shape 

where it is at a maximum around -0.1π radian, and at a minimum around ± π radian.  

 One mathematical function that possesses this shape is the exponential probability 

density function (PDF) with a mean of 1, shown in the red line in Figure 5.4. When applied to 

the absolute phase value, this exponential probability density function is unimodal, 

symmetric, and has a more convex shape than the 'normal' Gaussian PDF used in the original 

AMPH model (the basis of the Stress Phase Code). Consequently, it is particularly suitable 

for describing a property (i.e. prosodic strength) that reaches a maximum at one point (i.e. -

0.1π radian), then falls off exponentially and symmetrically toward either side of this 

maximum.  

 Since the shape of the exponential PDF is more convex than the 'normal' bell-shaped 

PDF, phase values close to the maximum will increase much more rapidly in their PSI values 

than phase values far away from the maximum. This results in a more conservative 

assignment of prosodic strength, since phase values have to be relatively close to the 

maximum before they can achieve high PSI values. This is consistent with the narrow width 

of the 'Strong' phase region observed in the distribution of vowel nuclei in metronome-timed 

speech, where 'Strong' vowel nuclei occurred within a narrow 0.6π radians-wide phase 

window. This 0.6π radians width is substantially less than the 1π radians width expected if 

the total phase space of 2π radians was divided equally into 'Strong' and 'weak' regions. 

Hence, the convex-shaped exponential function appropriately reflects this heightened 

sensitivity for phase values very close to the maximum (so that small phase changes here 

translate into large PSI gains).  
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 According to the exponential PDF, PSI values of at least 0.4 (corresponding to phase 

values between -0.4π and 0.2π radian) would be considered 'Strong', whilst values under 0.4 

would be considered 'weak' (as shown in Figure 5.4). For the S-AMPH model, there were 5 

Stress tiers that could each contribute a different phase value to the PSI of a given syllable 

peak. Therefore, the circular mean of these 5 different phase values was used to assign the 

PSI. An example of prosodic strength assignment for an iambic (w-S) metronome-timed 

sentence is shown in the bottom panel of Figure 5.4, applying a 'Strong' PSI threshold value 

of 0.4. In this example, all 28 syllables were correctly assigned as being either 'Strong (S)' or 

'weak (w)'. 
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Figure 5.4. (top) Exponential PDF as the basis for the Prosodic Strength Index (PSI). Note 

that the peak of the function lies at -0.12 pi radian, and phase values between -0.42 pi to 0.18 

pi radian achieve PSI values above 0.4. (middle) Example of metronome-timed Iambic (w-S) 

meter sentence, syllable peaks detected (red dots) and actual location of vowel nuclei (black 

dots). (bottom) Assignment of syllable prosodic strength using the PSI. Individual bars 

correspond to syllables, and the height of each bar shows the PSI value. Syllables with a PSI 

value of ≥0.4 were considered 'Strong (S)', syllables with a PSI value of <0.4 were 

considered 'weak (w)'. 
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6   FUNCTIONAL EVALUATION OF THE S-AMPH 

& AMPH MODELS 
 

 In this final chapter of Part III, a comparison of the relative success of the original 

AMPH model and new S-AMPH model is presented. Two evaluation measures were adopted. 

These are (1) the identification of syllable vowel nuclei using Syllable modulator 'peaks' ; and 

(2) the assignment of syllable stress (Strong or weak). For both of these evaluation measures, 

d' statistics were computed to evaluate the level of success achieved by each model.  

 The same two sets spoken material that were used to develop the prosodic indices in 

Chapter 5 were also used for the functional evaluation here. These two sets of spoken 

material were : (A) the 9 metrical variations of the sentence "Jack and Jill went up the hill...", 

spoken in time to a metronome beat ; and (B) the 20 nursery rhyme sentences that were 

freely-produced. The results for identification of syllable vowel nuclei are presented first in 

Section 6.1, followed by the results for assignment of syllable stress in Section 6.2. 

 

6.1 SYLLABLE VOWEL NUCLEUS DETECTION 

 

6.1.1 EVALUATION PROCEDURE 

 

 For both the AMPH and S-AMPH models, an automated peak-detection procedure 

was used to detect Syllable modulator peaks that corresponded to syllable vowel nuclei. For 

the S-AMPH model, the parameters used for peak detection and selection were as detailed in 

the Section 5.2.2. For the AMPH model, syllable modulator peaks were also detected using 

Matlab's peak detection algorithm, using a minimum peak height of 0.3 standard deviations. 

No additional peak selection was required for the original AMPH model, as only one set of 

peaks was produced from the wholeband Syllable modulator (compared to the 5 sets of peaks 

produced by the 5 spectral bands in the S-AMPH). 

 In Section 5.2.1, it was observed that the vast majority of syllable vowel nuclei were 

located in close proximity to the oscillatory peak (0 pi radian) of the Syllable tier modulator. 

However, while the actual vowel nuclei may be closely associated with Syllable modulator 
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peaks, the converse may not be true - not all the automatically-detected Syllable modulator 

peaks may be 'caused' by syllable vowel occurrence. For example, peaks in the Syllable 

modulator could also correspond to fricative sounds (especially in high frequency bands), or 

to random background noise. If the Syllable peak detection and selection criteria was too lax, 

these spurious peaks could be mistakenly identified as real syllable vowels by the model. 

Conversely, if the Syllable peak detection criteria was too strict, some peaks corresponding to 

actual vowel nuclei might be missed. This could occur, for example, if the uttered syllable 

was very soft, or very brief. In signal detection terms, these two possibilities (spurious peaks 

and missed syllables) would correspond to 'false alarms' and 'misses' respectively, as shown 

in Table 6.1. 

 Figure 6.1 shows an example of a freely-produced sentence from the nursery rhyme 

"Lucy Lockett" where both misses and false alarms occurred. Here, syllable peaks were 

detected using the S-AMPH model. Note that although the correct total number of syllable 

peaks was detected (24), these actually included 1 miss (yellow box) and 1 false alarm (red 

box). Hence, if one were simply to count the total number of syllable peaks that the model 

detected, without considering whether any of these were spurious, the success of the model 

would be over-estimated. In view of this, a d' analysis was used to provide a more complete 

picture of the success of the model in terms of the number of 'hits', 'misses', 'false alarms' and 

'correct rejections' produced. The procedures used for computing the responses in each 

category are detailed next. 

Figure 6.1. Example of syllable peak detection for freely-produced nursery rhyme 'Lucy 

Lockett'. The top panel shows the original waveform (grey), the 3 highest-power Syllable Tier 

modulators from Spectral Bands 2, 3 & 4 (lines), automatically-detected syllable peaks (red 

dots) using the revised S-AMPH model, and manually-measured vowel nuclei (black dots).  

 

"Lu -cy Lo-ckett lost her po -cket   Ki -tty Fi -sher found it                     Not   a    pe-nny was there in it     on-ly.." 
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Table 6.1. Summary of signal detection terms and their relevance to syllable vowel nucleus 

detection 

 Syllable Peak Detected Syllable Peak NOT Detected 

Syllable Vowel Nuclei HIT MISS 

Not Syllable Vowel Nuclei FALSE ALARM CORR REJECTION 

 

 Hits. A Syllable modulator peak was considered as having correctly identified a 

corresponding syllable vowel nucleus (i.e. a 'hit') if the peak lay within +/- half the mean 

syllable length (for that sample) of the actual syllable vowel nucleus
18

.  

 Misses. A 'miss' was any syllable vowel nucleus that was not detected by the model. 

This was computed by subtracting the total number of 'hits' from the total number of actual 

syllable vowel nuclei in the sample. 

 False alarms. A 'false alarm' was a Syllable peak that was identified by the model as 

corresponding to a real syllable vowel, but did not actually correspond to any syllable vowel. 

The number of false alarms for each sample was computed by subtracting the number of 

correctly identified syllable vowels ('hits') from the total number of peaks identified by the 

model as corresponding to syllable vowel nuclei.  

 Correct rejections. A 'correct rejection' was a spurious peak in the Syllable modulator 

that did not actually correspond to a syllable vowel, and was correctly eliminated by the 

model. To compute the number of correct rejections, an estimate of the total number of 

'spurious peaks' that did not correspond to a syllable vowel was required. This estimate was 

generated by (a) detecting all possible peaks in the sample, setting no criteria on the mean 

peak height or distance (i.e. any point that was higher than its surrounding neighbours was 

included) and (b) subtracting the number of actual syllable vowel nuclei in the sample from 

the value obtained in (a).  

 However, since there were 5 spectral bands in the S-AMPH used for Syllable peak 

detection but only 1 band used in the AMPH, there would be 5 times as many spurious peaks 

detected by the S-AMPH model as compared to the AMPH model. Therefore, the total 

number of spurious peaks detected from all 5 S-AMPH bands was divided by 5, so that this 

would be comparable in number to the number of spurious peaks detected in the AMPH 

                                                 
18

 The mid-point, not the onset of the syllable vowel nucleus. 
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model. Having obtained a normalised estimate of the number of spurious peaks in the sample, 

the number of correct rejections was then computed by subtracting the number of false alarms 

from this (normalised) number of spurious peaks. 

 

6.1.2 RESULTS 

 

6.1.2.1 Metronome-Timed Speech (Sample Set A) 

 Table 6.2 shows the mean syllable detection percentages (averaged over all 27 

samples from 3 speakers) and the resulting mean d' and criterion (response bias) values for 

the original AMPH and new S-AMPH models
19

. As shown in the table, both models had very 

high d' scores, with the AMPH model producing a d' of 4.81, and the revised S-AMPH model 

producing a d' of 5.01. On a non-parametric Wilcoxon matched-pairs test
20

, there was no 

significant difference between the d' of the two models (Z = 0.00, p = 1.00). Therefore, both 

models performed equally well in terms of syllable detection, correctly detecting 94%-97% 

of syllable vowel nuclei (hits).  

Table 6.2. Syllable detection performance for AMPH and S-AMPH models (metronome 

speech) 

AMPH : d' = 4.81, bias = 0.34 

(mean over 27 samples) Syllable Peak Detected Syllable Peak NOT Detected 

Syllable Vowel Nuclei 94.2%  (HIT) 5.8%   (MISS) 

Not Syllable Vowel Nuclei 5.6%   (FALSE ALARM) 94.4% (CORR REJECTION) 

 

S-AMPH : d' = 5.01, bias = 0.14 

(mean over 27 samples) Syllable Peaks Detected Syllable Peaks NOT Detected 

Syllable Vowel Nuclei 97.1%  (HIT) 2.9%    (MISS) 

Not Syllable Vowel Nuclei 1.5%    (FALSE ALARM) 98.5%  (CORR REJECTION) 

                                                 
19

 Note that the mean d' score shown here is the average d' score taken across all speech samples. This mean d' 

value is not the same as the single d' score that would be computed from the mean percentages shown in the 

tables. That is, the mean d' is not the same as the d' of the mean percentages. The mean d' is chosen for display 

because it better reflects the individual sample d' values that were entered into the statistical test. 
20

 The distribution of d' scores across the 3 speakers was not normal (Kolmogorov-Smirnov test, p<.05), 

therefore a non-parametric test was used. 
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 In terms of response bias, the S-AMPH model had a lower (more neutral) criterion of 

0.14, compared to 0.34 for the AMPH model. The more positive criterion value for the 

AMPH model indicates that it was more conservative than the S-AMPH model in identifying 

syllable vowel nuclei, since the signal had to be stronger to elicit a detection response (hit or 

false alarm) from the model. 

 

6.1.2.2 Freely-Produced Speech (Sample Set B) 

 Although the performance of the two models in syllable vowel detection was 

equivalent for metronome-timed speech, there was a clear difference in performance for un-

timed speech. Table 6.3 shows the mean syllable detection percentages (averaged over all 

120 samples from 6 speakers) and the resulting mean d' and criterion (response bias) values 

for the original AMPH and new S-AMPH models.   

 For this corpus of un-timed speech, the S-AMPH model produced 16.9% more hits 

than the AMPH model, and registered less than half the AMPH false alarm rate. As a result, 

the S-AMPH model had a much higher d' value of 2.29, compared to 0.52 for the original 

AMPH model. On a paired-samples t-test
21

, this difference in d' scores between the two 

models was highly significant (t(5) = -6.67, p<.01). 

Table 6.3. Syllable detection performance for AMPH and S-AMPH models (un-timed speech) 

AMPH : d' = 0.52, bias = -0.20 

 (mean over 120 samples) Syllable Peaks Detected Syllable Peaks NOT Detected 

Syllable Vowel Nuclei 66.6%  (HIT) 33.4%  (MISS) 

Not Syllable Vowel Nuclei 47.2%  (FALSE ALARM) 52.8%  (CORR REJECTION) 

 

S-AMPH : d' = 2.29, bias = -0.01 

 (mean over 120 samples) Syllable Peaks Detected Syllable Peaks NOT Detected 

Syllable Vowel Nuclei 83.5%  (HIT) 16.5%  (MISS) 

Not Syllable Vowel Nuclei 19.9%  (FALSE ALARM) 80.1%  (CORR REJECTION) 

 

                                                 
21

 The distribution of d' scores across the 6 speakers was normal (Kolmogorov-Smirnov test, p>.05), therefore a 

parametric test was used. 
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 As was the case for metronome-timed speech, the S-AMPH model again had a more 

neutral criterion value of -0.01, compared to -0.20 for the AMPH model.  

 

6.1.3  SUMMARY & DISCUSSION FOR SYLLABLE VOWEL NUCLEUS DETECTION 

 

 For metronome-timed speech, both models performed on par (94% vs 97%) for 

syllable vowel identification. However, for un-timed speech, the performance of the S-

AMPH model out-stripped the AMPH model, producing 17% more hits, and half the false 

alarm rate. Therefore, the performance of the S-AMPH model on syllable vowel 

identification was superior to the AMPH model, but only for un-timed (freely-produced) 

speech.  

 In metronome-timed speech, each syllable is clearly separated in time by brief gaps or 

pauses. These gaps are inserted by the speaker to maintain the isochronous timing between 

syllables. By contrast, in freely-produced speech, co-articulation occurs so that these brief 

gaps between the syllables are removed. In the AMPH wholeband envelope, this co-

articulation leads to a 'blending' of energy between adjacent syllables so that the peaks from 

individual syllables merge into one another. This may account for the drastic drop in 

performance for the AMPH model for syllable vowel identification in freely-produced 

speech.  

 However, if the speech signal is divided into several spectral bands, temporally co-

articulated syllables can still be distinguished if there is sufficient spectral separation between 

their vowel sounds, so that the syllable peaks appear in different spectral bands. Hence, the 

greater spectral resolution of the S-AMPH model pays off for syllable vowel identification in 

fluent, un-timed speech.  

 In comparison to the other methods for syllable detection reviewed in Section 1.8 of 

the Introduction, the S-AMPH model appears to have performed reasonably well. The current 

amplitude-based method is particularly similar to that used by Pfitzinger et al (1996), who 

also used peaks in the low-pass filtered (~<10 Hz) envelope as candidates for syllables. 

Pfitzinger et al (1996) reported accuracy rates of 87% and 79% for read and spontaneous 

speech respectively. These percentages are not distant from the S-AMPH accuracy rates of 

>97% and >80% for metronome-timed and un-timed speech respectively (although no 
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spontaneous speech was used in this evaluation). By comparison, supervised machine-

learning methods by Howitt (2000) and Shastri et al (1999) are able to achieve syllable 

detection accuracy rates of up to 88%, whereas Kanlinli's (2011) biologically-inspired 

auditory attention model achieves an impressive 92% accuracy on the same TIMIT corpus of 

read speech. Therefore, in terms of syllable detection, the current S-AMPH method performs 

as well as other unsupervised amplitude-based methods. From the psychological perspective, 

this suggests that the amplitude envelope of the raw acoustic signal already provides very 

strong cues as to the location of most (i.e. ~80%) syllable vowel nuclei in speech, even before 

the higher-order contextual or lexical knowledge available to the listener is considered. To 

achieve any further gains in accuracy, more complex methods that take these higher-order 

factors into account will need to be employed. These include machine learning methods, 

HMMs, or methods where the search for syllables is guided by attention (e.g. Kalinli, 2011) 

or speech rhythm (e.g. Zhang & Glass, 2009). 
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6.2 PROSODIC STRESS ASSIGNMENT 

 

6.2.1 EVALUATION PROCEDURE 

 

 The second evaluation procedure involved assessing the performance of the models in 

syllable prominence or stress assignment (Strong or weak). Recall that for the AMPH model, 

syllable prominence was computed using the Stress Phase Code (Chapter 2, Section 2.5.2). 

This employed a Gaussian probability density function (PDF) transformation of the Stress 

modulator phase value concurrent with each syllable peak. For all speech samples, the 

threshold value used was 0.5 (as per Chapter 2) so that syllables achieving values greater than 

or equal to 0.5 were assigned a 'Strong' status. Syllables achieving values less than 0.5 were 

assigned a 'weak' status. 

 For the S-AMPH model, syllable prominence was computed using the Prosodic 

Strength Index (PSI), described in Chapter 5, Section 5.3.2. This employed a different 

exponential PDF transformation. Also, as there were now 5 Stress modulators from the 5 

spectral bands (instead of 1 wholeband Stress modulator), the Stress phase value used for 

computing the PSI was the circular mean of the 5 Stress modulator phase values that were 

concurrent with the Syllable peak. For the metronome-timed speech sample, the threshold 

PSI value used was 0.4 (as explained in Chapter 5, Section 5.3.2). Syllables achieving values 

greater than or equal to 0.4 were assigned a 'Strong' status. Syllables achieving values less 

than 0.4 were assigned a 'weak' status. However, for the freely-produced speech samples, it 

was found that the PSI threshold value of 0.4 yielded poor results. Recall that this PSI 

threshold had been determined using the Stress phase-distribution patterns of the metronome-

timed speech corpus, and thus may not be appropriate for the freely-produced speech corpus. 

Therefore, a lower PSI threshold of 0.22 was used for the un-timed speech corpus. This PSI 

threshold was selected to match the false alarm rate produced by the AMPH model (~30%)  

as closely as possible so that the two models could be compared on equal footing. The 

implications of changing the PSI threshold for the S-AMPH model are discussed later at the 

end of Chapter 6.  

 The automatically computed syllable prominence assignments were then compared 

against the actual prosodic status of each syllable in the utterance. As described in Chapter 5, 

Section 5.1, for the metronome-timed corpus, the actual stress patterns were known and 



166 

 

deliberately produced by the speakers. On the other hand, for the freely-produced speech 

corpus, speakers were not explicitly instructed to produce the nursery rhyme sentences with 

any particular stress pattern. Therefore, speakers either used the familiar stress template for 

each nursery rhyme, or they produced their own stress patterns which differed from the 

familiar template. To ascertain the exact stress patterns that were produced by each speaker, 

the nursery rhyme sentences were manually stress-transcribed by a female native English 

speaker with formal training in Linguistics (not the author).  

 To evaluate the success of the models in prosodic stress assignment, d' values were 

computed from the hits, misses, false alarms and correct rejections generated by each model. 

These 4 types of responses are shown in Table 6.4. Hits were prosodically-stressed syllables 

that were correctly assigned a 'Strong' status.  Misses were prosodically-stressed syllables that 

were incorrectly assigned a 'weak' status. False alarms were unstressed syllables that were 

incorrectly assigned a 'Strong' status, and correct rejections were unstressed syllables that 

were correctly assigned a 'weak' status.  For this evaluation process, only correctly identified 

syllable peaks were included in the analysis (i.e. 'hits' from the previous syllable vowel 

identification process). This was done so that the effectiveness of prosodic stress assignment 

could be evaluated independently of the model's success in identifying syllables in the first 

place. 

Table 6.4. Summary of signal detection terms and their relevance to prosodic stress 

assignment 

 Assigned 'Strong' Assigned 'weak' 

Strong syllable HIT MISS 

Weak syllable FALSE ALARM CORR REJECTION 
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6.2.2 RESULTS 

 

6.2.2.1 Metronome-Timed Speech (Sample Set A) 

 Table 6.5 shows the mean stress assignment percentages (averaged over all 27 

samples from 3 speakers) and the resulting mean d' and criterion (response bias) values for 

the original AMPH and new S-AMPH models.  From the table, it may be observed that both 

the AMPH and S-AMPH models performed very well. A very high proportion (>95%) of 

stressed syllables were correctly assigned with a Strong status (i.e. hits), and high mean d' 

values were achieved by both models (4.10 and 4.44 for AMPH and S-AMPH respectively). 

 The S-AMPH model (using the exponential PDF) achieved slightly (1.6%) more hits 

than the original model, which had used a Gaussian PDF to calculate the PSI. Moreover, this 

improvement also came together with a slightly reduced false alarm rate (7.7% vs 9.1%), 

indicating that the improved performance was not merely an artifact of relaxing the detection 

criterion. Consistent with this interpretation, the gains for the S-AMPH model were achieved 

while keeping the response bias the same as for the AMPH model (-0.27 vs -0.26).  However, 

on a non-parametric Wilcoxon matched-pairs test
22

, there was no significant difference in the 

d' scores of both models (Z = 1.60, p = 0.11). Therefore, any improvements produced by the 

S-AMPH model in prosodic stress assignment were only slight. 

Table 6.5. Prosodic stress assignment performance for AMPH and S-AMPH models, for 

metronome-timed speech 

AMPH : d' = 4.10, bias = -0.26 

(mean over 27 samples) Assigned 'Strong' Assigned 'weak' 

Strong syllable 95.0%  (HIT) 5.0%   (MISS) 

Weak syllable 9.1%   (FALSE ALARM) 90.9% (CORR REJECTION) 

 

S-AMPH (PSI threshold of 0.4): d' = 4.44, bias = -0.27  

(mean over 27 samples) Assigned 'Strong' Assigned 'weak' 

Strong syllable 96.6%  (HIT) 3.4%   (MISS) 

Weak syllable 7.7%   (FALSE ALARM) 92.3% (CORR REJECTION) 

                                                 
22

 The distribution of d' scores across the 3 speakers was not normal (Kolmogorov-Smirnov test, p<.05), 

therefore a non-parametric test was used. 
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6.2.2.2 Freely-produced speech (Sample Set B) 

 Finally, the performance of both models in prosodic stress assignment was evaluated 

for freely-produced speech. Table 6.6 shows the mean stress assignment percentages 

(averaged over all 120 samples from 6 speakers) and the resulting mean d' and criterion 

(response bias) values for the original AMPH and new S-AMPH models.   

 From inspection of Table 6.6, the S-AMPH model appeared to perform better than the 

AMPH model, producing almost 10% more hits, while keeping the same false alarm rate 

(recall that the S-AMPH PSI threshold of 0.22 used here ensured that the false alarm rates for 

the two models would be as similar as possible). However, on a paired-samples t-test
23

, the 

difference in d' scores between models was again not significant (t(5) = -1.28, p=.26). 

Therefore, as was the case for the metronome-timed corpus, although there appeared to be 

gains in performance for the S-AMPH model, these gains were not robust enough to reach 

statistical significance. 

Table 6.6. Prosodic stress assignment performance for AMPH and S-AMPH models, for un-

timed speech 

AMPH : d' = 1.19, bias = 0.24 

 (mean over 120 samples) Assigned 'Strong' Assigned 'weak' 

Strong syllable 61.7%  (HIT) 38.3 %   (MISS) 

Weak syllable 31.7 %   (FALSE ALARM) 68.3% (CORR REJECTION) 

 

S-AMPH (PSI threshold of 0.22) : d' = 1.35, bias = 0.03 

 (mean over 120 samples) Assigned 'Strong' Assigned 'weak' 

Strong syllable 70.2 %  (HIT) 29.8 %   (MISS) 

Weak syllable 30.8 %   (FALSE ALARM) 69.2% (CORR REJECTION) 

 

  

                                                 
23

 The distribution of d' scores across the 6 speakers was normal (Kolmogorov-Smirnov test, p>.05), therefore a 

parametric test was used. 
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6.2.3  SUMMARY & DISCUSSION FOR PROSODIC STRESS ASSIGNMENT 

 

 In both metronome-timed and freely-produced speech, there was no significant 

difference in the d' scores of the AMPH and S-AMPH models, even though the S-AMPH 

model appeared to show gains over the AMPH model. This suggests that the Stress phase 

coding of syllable prominence is highly robust, and the shape of the PDF transformation 

function used (Gaussian or exponential) has no significant effect on the effectiveness of this 

coding scheme. 

 However, it should be noted that the performance of both models in stress assignment 

for freely-produced speech was far from ideal. Neither model succeeded in assigning more 

than 70% of syllables with the correct prosodic status when speech was more produced in this 

more 'natural' context. However, while this margin of error (30%) may appear to be large, it 

is not inconsistent with the performance of other models developed specifically for automatic 

stress transcription. 

 For example, Silipo & Greenberg (1999) developed models for automatic stress 

transcription of spontaneous speech using amplitude, duration and pitch cues. They tested a 

variety of models where these cues were either used singly or in paired combination. Silipo & 

Greenberg reported that the best performance was obtained when both duration and 

amplitude cues were used in combination, yielding correct identification of ~80% of stressed 

syllables and ~78% of unstressed syllables. Performance using amplitude cues alone was 

~64% for stressed syllables and ~65% for unstressed syllables.  

 For freely-produced speech, the original AMPH model was similar in performance to 

Silipo & Greenberg's amplitude-only model, correctly identifying 62% of stressed syllables 

and 68% of unstressed syllables. The performance of the S-AMPH model was statistically 

equivalent, where ~70% of stressed and unstressed syllables were correctly indentified using 

just amplitude cues from the speech envelope. Therefore, both AMPH and S-AMPH models 

performed as well as could be expected, when only amplitude cues were used to infer stress 

pattern, not taking into account duration or pitch cues.  

 Finally, the PSI threshold that is used for stress assignment in the S-AMPH model 

affects the overall performance of the model in terms of trade-offs between hits and false 

alarms. Figure 6.2 shows this trade-off between hits and false alarm rates for different PSI 
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threshold values as an ROC (receiver operating characteristic) curve, computed for the un-

timed speech corpus. If the S-AMPH model is to be used in future studies for automatic stress 

transcription, the PSI threshold should be adjusted to reflect the aims and priorities of the 

study.  

Figure 6.2. ROC curve for S-AMPH prosodic stress assignment using different PSI threshold 

values, for the un-timed speech corpus (sample set B.) Actual computed hit rates (y-axis) and 

false alarm rates (x-axis) for 4 PSI threshold values are shown as red dots. The solid black 

curve indicates the logarithmic line of best fit through these points. 

 

 For example, if a low false alarm rate is the priority (i.e. no weak syllable should be 

erroneously labelled as Strong), then a higher PSI threshold should be used. Conversely, if a 

high hit rate is important (i.e. as many Strong syllables as possible should be detected), then a 

low PSI threshold should be used. As shown in Figure 6.2, by using a PSI threshold of 0.1, a 

hit rate of 87% may be achieved, but this creates a very high false alarm rate of 60%. On the 

other end of the spectrum, false alarms may be reduced to just 15%, if a low hit rate of just 

52% is sufficient. The PSI threshold of ~0.2 used in the evaluation of un-timed speech here 

appears to represent the best compromise. At this threshold value, over 70% of Strong 

syllables are correctly detected, and around half that percentage (35%) of weak syllables are 

falsely identified, giving a signal-to-noise ratio of around 2.  
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PART III SUMMARY 
 

 Unlike the theoretically-focussed AMPH model, the S-AMPH was developed as a 

data-driven model. Here, the intention was to use the underlying temporal statistics of the 

envelope as the basis for the assumed spectro-temporal hierarchical structure of the model, 

and to derive all ensuing prosodic indices from actual distribution patterns in the speech 

envelope. This aim was operationalised by applying principal component analysis (PCA) to 

reduce a high-dimensional spectro-temporal representation of the speech envelope to a non-

redundant, lower-dimensional hierarchical representation.  

 The result of this process was a new 5 (spectral band) by 3 (modulation rate band) 

spectro-temporal AM hierarchy. Compared to the original AMPH model, this representation 

was more complex in the spectral domain (5 spectral bands instead of 1), and less complex in 

the AM rate domain (3 modulation rate bands instead of 5). Most importantly, these bands 

were derived statistically from the structure of the envelope itself, rather than determined 

theoretically.  

 It is worth noting that the 'Stress' and 'Syllable' tiers of the AM hierarchy emerged 

spontaneously as part of the S-AMPH modulation band representation (albeit with a wider 

Syllable bandwidth). These two rates of modulation were fundamental to the speech rhythm 

computation in the original AMPH model. The new S-AMPH model could not have 

continued to function on similar principles to the AMPH model (i.e. using Stress-Syllable 

phase relationships) if these two bands had not emerged in the PCA analysis as separate 

modulation bands, with modulation rates that were similar to the AMPH model. The fact that 

Stress and Syllable modulation bands did emerge from the modulation statistics indicates that 

the initial theoretically-motivated intuitions about the structure of the speech signal at these 

two key modulation rates were on the right track. This is also consistent with the results of 

the tone-vocoder experiment (Chapter 3), which had indicated that listeners relied heavily on 

modulations in these two rate bands for speech rhythm perception, and were also sensitive to 

the phase relationship between these two bands. 

 The hypothesis that the Stress cycle was functionally equivalent to the linguistic 

prosodic foot was also examined by computing the distributions of syllable vowel nuclei with 

respect to Stress AM phase in nursery rhyme sentences with different prosodic meters. For 
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metronome-timed speech, the phase distributions produced by speakers provided support for 

this hypothesis. First, speakers tended to divided Stress 'phase-space' into 'Strong' and 'weak' 

regions, placing Strong syllables near the Stress peak, and weak syllables far from the Stress 

peak. Second, speakers further sub-divided the 'weak' phase region according to the number 

of weak syllables contained in the prosodic foot.  

 For un-timed speech, speakers were also found to place syllables more frequently at 

Strong and weak regions in Stress phase space, but these phase regions acted as weak 

attractors, rather than imposing the strong constraints observed in metronome-timed speech. 

These findings indicate that speakers do indeed use Stress phase to constrain the timing of 

stressed and unstressed syllables. However, a strong view of the Stress cycle = prosodic foot 

hypothesis is only supported in metronome-timed speech, not in freely-produced speech.  

 Using the phase regions typically occupied by Strong (stressed) and weak (unstressed) 

syllables in the data, a new Prosodic Strength Index was developed. This used an exponential 

probability density function to convert Stress phase values into a prominence index ranging 

from 0 to 1.  By setting a threshold PSI value, syllables could be assigned with a binary stress 

status ('Strong' or 'weak') depending on whether they achieved PSI values above or below the 

threshold.  

 The two models were then functionally compared on two criteria : syllable vowel 

nucleus detection, and prosodic stress assignment. For syllable vowel nucleus detection, both 

models performed near ceiling (around 95%) for metronome-timed speech, but the S-AMPH 

model showed a distinctly superior performance for freely-produced (fluent) speech. For this 

un-timed speech sample, the S-AMPH model registered a 17% improvement in hit rate as 

compared to the AMPH model, while more than halving the false alarm rate. Therefore, the 

multi-band spectral complexity of the S-AMPH model made it better able to handle the 

challenges of syllable vowel detection in natural speech.  

 However, for prosodic prominence assignment, both models gave statistically 

equivalent performances for both metronome-timed and un-timed speech. The accuracy of 

prosodic stress assignment for un-timed speech was comparable to the performance of 

amplitude-only models developed specifically for automatic stress-transcription (e.g. Silipo 

& Greenberg, 1999). Both models used different probability functions to transform the Stress 

phase values, but performed equally well on the final stress assignment. This suggests that the 
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fundamental principle of Stress phase indicating syllable prominence is a robust one, not 

dependent on any particular mathematical transformation.  

 In Part IV, the new S-AMPH model will be employed to address a variety of 

experimental questions. Apart from being an analytical tool, the S-AMPH model also 

represents a novel cognitive and neural framework for understanding speech rhythm, and 

could provide unique insights into how rhythmic differences arise between individuals, and in 

different contexts. 
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TWO EXPERIMENTAL CASE STUDIES 
 

 In these chapters, the S-AMPH model was used as an analytical tool to compare the 

underlying temporal structure of different types of speech. Two different research questions 

were addressed in two separate experiments
24

.  

 In Chapter 7, the S-AMPH model was used to determine how the spectro-temporal 

structure of child-directed speech (CDS) differed from that of adult-directed speech (ADS). 

When adults speak to children, they prosodically-enhance their speech in order to 

accommodate the needs of the child listener. Here, the spectro-temporal changes 

accompanying this prosodic enhancement were investigated. In the spectral domain, CDS 

showed a specific 'boost' at middle frequencies (~1200 Hz), suggesting that vowel sounds 

were relatively louder and more strongly co-modulated across spectral channels. In the 

modulation domain, CDS samples were found to be more rhythmically-regular than ADS 

samples. CDS also showed a more tightly-nested AM hierarchical structure that was 

indicative of stronger prosodic patterning (e.g. more frequent syllable stress). These global 

changes in the spectro-temporal structure of CDS are consistent with the enhancement of 

word and phrase boundaries in the acoustic signal. Such word boundary exaggeration could 

help the child to segment words from the speech stream more easily, facilitating speech 

comprehension and new vocabulary acquisition.  

 In Chapter 8, the perception and production of rhythmic speech was investigated in 

adults with and without developmental dyslexia. Participants performed three different 

speech rhythm tasks, testing speech rhythm perception, speech rhythm entrainment (tapping) 

and speech rhythm production respectively. Performance on these tasks was measured using 

conventional measures, as well as using indices from the S-AMPH model. In all 3 perception 

and production tasks, dyslexic individuals consistently showed disruptions to syllable-level 

timing. Individual differences in syllable-timing (both in perception and production) were 

strongly related to performance in phonological processing and reading measures. The S-

AMPH indices also uncovered differences between dyslexics and controls that were not 

evident from conventional analysis. Therefore, envelope-based measures could be useful 

analytical tools to complement more traditional methods of speech analysis. 

                                                 
24

 The experimental design, data collection and analysis were all carried out by the author as part of this thesis. 
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7   DIFFERENCES IN TEMPORAL STRUCTURE 

BETWEEN CHILD-DIRECTED AND ADULT-

DIRECTED SPEECH 
 

 Child-directed speech (CDS) and adult-directed speech (ADS) refer to two different 

speaking 'registers' or styles. These differences are thought to arise because the speaker is 

adapting his or her speaking style to the language abilities and needs of his or her audience. 

In child-directed speech, these adaptations reflect the fact that the child is a novice language-

learner, rather than an expert. Much of this adaptation occurs at the lexical and syntactic 

levels.  For example, child-directed speech contains simpler syntactic structures (Sachs et al, 

1976), shorter sentences (Barnes et al, 1983), and pertains to topics that are of interest to the 

child (Ferguson, 1977; Ferguson & Debose, 1977).  

 However, adaptation also occurs at the perceptual-acoustic level. Child-directed 

speech is prosodically-enhanced, making it more interesting and engaging for the listener, 

and conveying a positive affect (Fernald, 1989). The perceptual-acoustic properties of CDS 

have commonly been studied in terms of pitch, duration, speaking rate, pauses, etc (Broen, 

1972; Fernald & Simon, 1984; Fernald, 1989; Albin & Echols, 1996). However, child-

directed speech could also show different rhythm patterns and a different temporal 

organisation as compared to adult-directed speech. These adaptations in temporal structure 

could likewise be helpful for the child listener. This study aims to identify any such 

differences in temporal rhythmic structure between adult- and child-directed speech, using 

the S-AMPH as an analytical tool.  

 

7.1 METHODS 
 

7.1.1 PARTICIPANTS 

 

 Six female native British English speakers contributed samples of child-directed and 

adult-directed speech. All of the participants were highly fluent English speakers. Participants 

were selected on the basis of having had extensive prior experience in working with children. 

Prior experience with children was important since the participants would have to produce 
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realistic child-directed speech 'on demand' during the recording session, when no children 

were actually present. Two of the six participants were Cambridge University lecturers in 

early years education (having previously been teachers), and a further two participants were 

currently working as early years teachers. One participant was a speech and language 

therapist working with children. The last participant was an ex-teacher and doctoral student 

whose research involved working with children using poetry. All the speakers were familiar 

with the children's nursery rhymes used in this study. 

 

7.1.2 SPEECH RECORDING PROCEDURE 

 

 Each participant was recorded individually in a single 2-hour session. The recording 

session was conducted in a quiet location (either in the participant's home/office, or in a 

laboratory testing room) to minimise background noise. A TASCAM digital recorder (44.1 

kHz, 24-bit) was used for the speech recording, together with an AKG C1000S condenser 

microphone. The microphone was fixed to a microphone stand, and placed at a comfortable 

distance and height for the speaker. During the recording session, participants read printed 

texts out of a folder, or out of a children's book. To assist participants in producing 

appropriate 'child-directed' or 'adult-directed' speech, picture prompts were used. For 'child-

directed speech' (CDS) samples, participants were shown a picture of young children of a 

nursery age, and told to speak in a lively and engaging manner as if they were reading to the 

children in the picture. This CDS picture prompt is shown on the left in Figure 7.1.  

 

Figure 7.1. CDS (left) and ADS (right) target picture prompts. The relevant picture was 

presented to participants as the intended recipient(s) for their utterances. 
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 For 'adult-directed speech' (ADS) samples, participants were shown a picture of a 

professional-looking adult, and told to speak in a clear and formal way to this individual. The 

picture prompt for ADS is shown in Figure 7.1 on the right. A more formal version of ADS 

was requested to ensure that the participants produced clearly-enunciated ADS samples. If 

the ADS speech was sloppily produced, a difference between CDS and ADS samples could 

be due to a lack of clarity in the ADS samples, rather than being adult- or child-directed per 

se.  

 

7.1.3 SPEECH MATERIALS 

 

 Each speaker produced four speech corpora, two spoken in CDS and two spoken in 

ADS. These were (1) Nursery rhymes produced in child-directed speech (CDS Rhyme); (2) 

Nursery rhymes produced in adult-directed speech (ADS Rhyme); (3) Children's stories 

produced in child-directed speech (CDS Story); and (4) Spontaneous conversation spoken in 

an adult-directed manner (ADS Conversation).  

 

(1) CDS Rhyme &  (2) ADS Rhyme 

 In these two corpora, the spoken material (nursery rhymes) was held constant, and 

speakers were told to change their manner of speaking as if addressing a child (CDS Rhyme) 

or an adult (ADS Rhyme). A total of 44 familiar children's nursery rhymes were used, and 

each speaker produced all 44 nursery rhymes first in ADS, then in CDS. These were the same 

set of nursery rhymes that had previously been used to derive the S-AMPH model in Chapter 

3 (where only the CDS recordings were used), and are listed in Appendix 4.1. Since the 

spoken material was identical, any differences between the two corpora should cleanly reflect 

perceptual-acoustic variations in speaking style, without being affected by differences in 

words or syntax.  

 For the CDS version of the rhymes, participants spoke in a lively and rhythmic 

fashion, often speaking to the rhythm of tunes that were associated with these nursery rhyme 

(although the rhymes were not actually sung). For the ADS version of the rhymes, 

participants' utterances were less metrically-regular, and they attempted to produce the 

sentences with a 'normal' prosodic pattern, as appropriate to an adult audience. For example, 

for the nursery rhyme 'Polly Put the Kettle On' shown below, the CDS version followed the 
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duple beat of the sung version of the rhyme. Therefore stress was placed (CAPS) on every 

other syllable, and the syllables were grouped evenly into sets of trochaic feet (underlined). In 

the ADS version, the sentence was instead produced as if a verbal instruction was being given 

to Polly. Therefore a pause was introduced after the word 'Polly', and the words 'put the kettle 

on' formed a single long foot instead of being portioned into smaller feet. Therefore, the ADS 

Rhyme utterances had a less regular rhythm than the CDS Rhyme utterances.  

 

 

CDS : "PO-lly PUT the  KE-ttle  on.." 

ADS : "PO-lly [pause] , PUT the kettle on.." 

 

 

 Since the nursery rhymes varied in length, each rhyme was repeated between 1-3 

times to produce an adequate amount of spoken material for analysis. The shorter nursery 

rhymes were repeated more times than the longer nursery rhymes. Appendix 7.1 shows the 

duration of each nursery rhyme for each speaker, and the number of repetitions produced, for 

both ADS and CDS modes of speaking. The syllable rate for each speaker and nursery rhyme 

was computed by dividing the duration of the sound file by the number of syllables in the 

nursery rhyme text. These syllable rates are also shown in Appendix 7.1. On average across 

the six speakers, the mean syllable rate was slower for CDS rhymes than for ADS rhymes 

(3.2 syllables per second versus 3.6 syllables per second). However, a paired t-test indicated 

that this difference was not significant (t(5) = 1.36, p=.23).   

 As nursery rhymes are normally directed to children rather than to adults, speakers 

could have found it awkward to produce nursery rhymes to adults, making ADS Rhymes 

unrepresentative of 'natural' ADS speech. Therefore, speech samples (3) CDS Story and (4) 

ADS Conversation were also collected. These were expected to be more representative of 

'naturally-produced' CDS and ADS. Both these speech corpora involved narrative 'story-

telling' to the listener, but the spoken material was allowed to differ, in order to be 

appropriate to the intended child or adult listener.  

 

 (3) CDS Story 

 For the third speech corpus, participants read 5 classic children's stories in a child-

directed manner. These stories were taken from the children's book 'The Puffin Baby and 

Toddler Treasury' (Puffin Books, 1998). The titles of the stories were 'The Gingerbread Man', 

'The Three Billy Goats Gruff', 'Goldilocks and the Three Bears', 'The Three Little Pigs' and 
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'The Ugly Duckling'. The language used in these stories was simple, and appropriate for 

nursery and preschool aged children. The following is an excerpt from the story 'The Three 

Little Pigs'. 

 "Once upon a time there were three little pigs who lived in a very small house with 

their mother. One day their mother gathered them all together and said, "It is time that you 

left our little house and built your own homes." The three little pigs said goodbye to their 

mother and as they set off down the road she called after them, "Beware the wolf doesn't 

catch you and eat you!" 

 Depending on the reading speed of the speaker, the recordings of the stories ranged 

from 4 to 8 minutes in length for each story. To produce speech samples that were 

comparable in length and quantity to the 44 nursery rhymes, nine continuous sections were 

extracted from each of the five stories, giving 45 story sections for each speaker. For each 

speaker, the length of each story segment was the same as the mean length across their 88 

CDS + ADS nursery rhyme samples. These mean lengths for each speaker are shown in 

Table 7.1. Different segment lengths were used for each individual (rather than one standard 

length for the whole group) because the speakers differed substantially in speaking rate. 

Therefore, to ensure that the same quantity of spoken material (i.e. syllables and words) was 

captured for each individual across nursery rhymes and stories, individually-adjusted segment 

lengths were used. Therefore, if an individual's speaking rate was slower, this would result in 

a longer mean section length for the nursery rhymes. This longer length would then also be 

used to segment her read stories so that each story sample would contain on average the same 

quantity of syllables and words as each nursery rhyme sample. 

 

Table 7.1. Mean lengths for CDS and ADS nursery rhyme samples by speaker, used to 

determine section length for CDS Story samples. 

Speaker Mean  Section Length (s) 

1 25.6 

2 23.9 

3 27.5 

4 34.3 

5 24.5 

6 26.1 
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(4) ADS Conversation 

 For the fourth speech corpus, spontaneously-produced adult-directed speech was 

recorded. Here, participants were provided with suggested topics to speak about, and were 

given a few minutes for mental preparation before they began speaking. These suggested  

topics were :  

• Describe a typical day at work (or home)? 

• Describe a book that you've read? 

• Describe a film that you've watched? 

• What leisure activities and hobbies do you enjoy?  

• What are you looking forward to in the summer? 

 

 Participants were told to speak about each topic for about 2-3 minutes, before moving 

on to the next topic. Since no verbal feedback was given and participants spoke continuously, 

these samples essentially comprised a narrative monologue that lasted around 10-12 minutes. 

As all the participants were eloquent speakers, the sentences in these conversation samples 

were typically well-formed and grammatically correct. Similar to the CDS Story recordings, 

sections were extracted from the continuous ADS recording for analysis. These sections were 

matched in length to the nursery rhymes produced by each speaker. Since the total amount of 

spontaneous conversation varied from speaker to speaker, the total number of segmented 

samples also differed from speaker to speaker, ranging from 23 to 34 samples
25

, with a mean 

of around 27 samples.  

 Table 7.2 summarises the speaking style and material used for the four speech 

corpora. In total, each of the 6 speakers contributed 44 CDS Rhyme samples, 44 ADS Rhyme 

samples, 45 CDS Story samples and ~27 ADS Conversation samples. This gave a total of 

~160 samples per speaker (each around 25s-35s in length), and a grand total of ~960 samples 

across all the speakers. Assuming that each speaker maintained a stable speaking rate, each of 

her samples (CDS Rhyme, ADS Rhyme, CDS Story or ADS Conversation) contained 

approximately the same amount of spoken material. This quantity matching was important so 

that in later analyses, differences between the corpora would not be confounded by 

differences in the amount of spoken material between samples in the corpora.  

                                                 
25

 The number of ADS conversation samples for the 6speakers were 26, 23, 27, 34, 24 and 26. 
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Table 7.2. Features of the four speech corpora 

 Speaking Style Type of Material 

(1) CDS Rhyme Child-directed Nursery Rhymes 

(2) ADS Rhyme Adult-directed Nursery Rhymes 

(3) CDS Story Child-directed Children's Stories 

(4) ADS Conversation Adult-directed Free Conversation 

 

7.1.4 ANALYSIS PROTOCOLS 

 

 The aim of the analysis was to compare the underlying spectro-temporal structure of 

the child- and adult-directed speech, using modulation patterns in the speech envelope. 

Therefore, the dimensionality reduction procedure previously used for deriving the 5 x 3 

spectro-temporal representation in Chapter 4 was also applied here. This was done to see if 

the number of derived bands, or the location of these bands would be different in ADS as 

compared to CDS. As described in Chapter 4, this procedure involved a separate Spectral 

PCA analysis (based on 28 spectral channels), and a separate Modulation Rate PCA analysis 

(based on 24 modulation rate channels).  

 

7.1.4.1 Spectral PCA 

 Prior to performing the PCA analysis on the 28 cochlear-spaced frequency channels, 

the RMS power for the spectral channels was computed. This initial step was performed to 

see if there were any obvious differences in patterns of spectral power across the 4 speaking 

conditions, before the more complex PCA analysis was applied. A Spectral PCA procedure 

was then applied to the samples, as described in Chapter 4, Section 4.3. For this PCA 

analysis, the speech signal was divided into 29 ERBN-spaced frequency channels, and the 

Hilbert envelope was taken from each spectral channel. As was done in Chapter 4, the first 

low-pass channel was discarded, and the remaining 28 spectral envelopes were then entered 

into a PCA analysis as separate variables. As before, the absolute value of the spectral 

channel loadings was taken, and these rectified values were averaged across all the samples, 

for each speaking condition. The mean rectified PCA loading patterns for each speaking 

condition were then compared. 
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7.1.4.2 Modulation Rate PCA 

 For this analysis, the speech signal was first divided into 5 spectral bands (as 

indicated by the results of the previous Spectral PCA). The Hilbert envelope was obtained for 

each spectral band and then low-pass filtered under 40 Hz. These 5 Hilbert envelopes from 

each spectral band were then individually passed through a 24-channel logarithmically-

spaced modulation filterbank spanning 0.9-40 Hz. Prior to conducting the PCA, the RMS 

power of the 24 modulation channels was computed to look for obvious differences in the 

modulation spectrum. Then, the modulation rate PCA procedure was applied to the 24 

modulation-filter outputs from each spectral band, as described in Chapter 4, Section 4.4. 

This PCA analysis was repeated separately for each of the 5 spectral bands. The absolute 

value of the modulation rate channel loadings was again taken, and these rectified values 

were averaged across all the samples for each speaking condition. The mean rectified PCA 

loading patterns for each speaking condition were then compared. 

 

7.1.4.3 AM Hierarchy Analysis 

 Finally, 5x3 AM hierarchies were extracted from the speech samples (as indicated by 

the results of the Spectral PCA and the Modulation Rate PCA). That is, each speech sample 

was filtered into 5 spectral bands. The Hilbert envelope was extracted from each spectral 

band, and this envelope was then filtered into 3 modulation rate bands ('Stress', 'Syllable' and 

'Phoneme'). The resulting sets of modulation rate bands were then analysed for their rhythmic 

structure and hierarchical organisation using two indices.  

 First, the rhythmic regularity at each modulation rate was compared by computing the 

autocorrelation function (ACF) for the Stress, Syllable and Phoneme AMs. The 

autocorrelation function computes the correlation of the signal with itself at different time 

lags. It is a measure of periodicity within the signal, and can be used to detect patterns that 

repeat over time. To assess the amount of periodic power contained in the ACFs, a Fourier 

transform was applied to the ACFs, resulting in a periodic power spectrum for each of the 

Stress, Syllable and Phoneme ACFs.  

 Second, the modulation hierarchy organisation of the speech samples was analysed by 

computing the peak-phase distribution between the three modulation tiers. That is, two 

distributions were computed, the distribution of (1) Syllable peaks with respect to Stress 
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phase; and (2) Phoneme peaks with respect to Syllable phase. In both cases, binned phase 

values were used to compute the distribution (17 equally-spaced bins between -π and π 

radians). 

 To quantify any differences in hierarchical AM organisation, a novel 'conditional 

entropy' (CE) measure was used. This measure computed the amount of uncertainty (entropy) 

about events in one modulation tier (e.g. occurrence of Syllable vowel nuclei), as a result of  

knowing the phase value of the adjacent slower tier (e.g. Stress phase). For example, if the 

entropy of Syllable vowel occurrence was low as a result of knowing Stress phase (i.e. CE 

was small), this indicated that there was tight hierarchical phase-nesting between the two 

modulation tiers, and Stress phase was strongly 'constraining' the occurrence of Syllable 

vowels. On the other hand, if the entropy of Syllable vowel occurrence was high even after 

knowing Stress phase, (i.e. CE was large) then Stress phase was unrelated to the occurrence 

of Syllable vowel nuclei, indicating weak hierarchical phase-nesting between the two 

modulation tiers.  

 Appendix 7.2 provides a more detailed explanation of entropy and conditional 

entropy, and formulae used for computing these values. The appendix also includes worked 

examples to explain how the peak-phase distribution should be interpreted. Information and 

entropy measures (including mutual information measures) are increasingly being used in 

neuroscience to measure properties of the neural signal, in particular the contribution of 

neuronal oscillatory phase to neural coding of sensory stimuli like speech (e.g. Kayser et al, 

2009; Cogan & Poeppel, 2011). Here, similar methods are applied to AM patterns within the 

AM hierarchy, to investigate hierarchical phase-nesting between tiers of the AM hierarchy. 
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7.2 RESULTS 

7.2.1  SPECTRAL PCA ANALYSIS 

 

7.2.1.1  RMS Power Across Cochlear Channels 

 Figure 7.2 shows the grand mean RMS power
26

 over the 28 cochlear channels for 

each speaking condition. The 4 speech corpora are each plotted in a different colour. From 

visual inspection, there appear to be clear differences in RMS power between CDS and ADS 

samples within spectral bands 1, 3 and 5. In the middle spectral band 3 (700 Hz-1750 Hz), the 

two CDS conditions (yellow and red lines) clearly showed higher RMS power than the two 

ADS conditions (blue and green lines). The opposite was true for the two extreme spectral 

bands 1 (100 Hz -300 Hz) & 5 (3900 Hz to 7250 Hz), where the two ADS conditions now 

showed higher RMS power than the two CDS conditions. Moreover, the order of effects 

across speaking conditions was maintained even though the direction of differences was 

reversed.  

Figure 7.2. RMS power of the 28 cochlear channels. Vertical dotted lines indicate the 

boundaries between the 5 S-AMPH spectral bands. The 4 speaking conditions are shown as 

different coloured lines. Shaded areas indicate the standard error of the mean. 

                                                 
26

 Since the overall RMS power differed across samples and speakers (i.e. some speakers were speaking more 

loudly than others), for each sample, the average power across all spectral channels was subtracted from each 

channel, leaving only the difference in power from the average power for each spectral channel. This difference 

power was then averaged over samples and speakers to give the results shown in Figure 7.2.  

Band 1              Band 2             Band 3             Band 4         Band 5 
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 In spectral band 3, CDS Story showed the highest RMS power, followed by CDS 

Rhyme, ADS Rhyme and ADS Conversation. In spectral bands 1 & 5, this order was 

perfectly reversed, with ADS Conversation now showing the highest RMS power, followed 

by ADS Rhyme, CDS Rhyme and CDS Story. This orderly pattern of RMS power differences 

suggests that child- and adult-directed speech differ systematically in their relative spectral 

composition. For child-directed speech, the power of the middle spectral frequencies was 

increased relative to the power of very low and very high spectral frequencies. For adult-

directed speech, the middle spectral frequencies received less emphasis, relative to very low 

and very high spectral frequencies. 

 It is worth noting that the differences between CDS and ADS samples occurred in 

spectral regions that corresponded fairly well to the S-AMPH spectral band divisions. For 

example, the increase in power for CDS samples at the middle spectral frequencies occurred 

between ~800-1750 Hz, which correspond closely with the spectral band 3 region of 700-

1750 Hz. This suggests that the 5 (PCA-derived) spectral bands do indeed reflect separate 

spectral components in speech, since they can be modulated independently (in power) by the 

speaker. However, recall from Appendix 4.3 that RMS power does not necessarily reflect 

correlation strength. Therefore, to investigate the underlying spectral correlation structure of 

the 4 types of speech more closely, a Spectral PCA analysis was conducted. 

 

7.2.1.2  Spectral PCA Analysis  

 The aim of this analysis was to investigate whether CDS and ADS samples had the 

same underlying spectral structure (i.e. 5 non-redundant spectral bands). To investigate this, 

the mean rectified PCA component loading patterns across 28 spectral channels were 

compared. Recall that spectral channels which show a similar loading for a given PCA 

component are assumed to carry similar (redundant) information.  

 

a. Individual Principal Component Loadings 

 The loading patterns for the top 3 PCA components in each speaking condition are 

shown in Figure 7.3. Only the top 3 components were analysed because cumulatively, these 3 

components already accounted for over 50% of the total variance in the samples. The 

variance accounted for by each principal component is indicated in the titles of Figure 7.3. In 

Figure 7.3, the x-axis plots the centre frequency for each spectral channel and the y-axis plots 
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the absolute (rectified) component loading, averaged across all samples and speakers. Each of 

the 4 speaking conditions is shown in a different colour.  

 From visual inspection, the overall loading patterns were very similar across the four 

spoken conditions. The locations of major peaks and troughs (indicating spectral band 

boundaries) were also very similar across the four conditions, coinciding well with the band 

boundaries previously identified in Chapter 4. These previously-identified band boundaries 

are shown as vertical dotted lines. This suggests that the fundamental band structure of the 

speech samples was similar across the four speaking conditions, and agreed well with the 

spectral band boundaries that had previously been identified.  

 However, there were also clear and systematic differences between the loading 

patterns of the four conditions. That is, although the spectral location of the peaks and 

troughs was similar across conditions, the relative height of the peaks differed systematically 

across conditions. For example, in PCA component 2 (middle plot of Figure 7.3), loadings 

within spectral bands 3 and 5 (indicated by the white arrows) were clearly different across 

speaking conditions. In both these spectral regions, component loadings were, from highest to 

lowest : CDS Story > CDS Rhyme > ADS Rhyme > ADS Conversation. This same pattern of 

component loading was also observed in PCA component 3 (right plot) in the region of 

spectral band 5 (white arrow). Therefore, CDS samples loaded more strongly than ADS 

samples in mid-high frequency regions. 

 The opposite pattern was observed for PCA component 1 in the regions of spectral 

band 3 and spectral band 1 (grey arrows). Here, the order of component loadings, from 

highest to lowest were : ADS Conversation/ADS Rhyme > CDS Story/CDS Rhyme. 

Therefore, ADS samples loaded more strongly than CDS samples in low-mid frequency 

regions.  

 Note that in spectral band 3 (the middle frequency band), there was an opposite 

loading order across conditions for PCA components 1 & 2. In component 1, ADS samples 

loaded more strongly, but in component 2, CDS samples loaded more strongly.  To estimate 

how these loading order differences would trade-off on average, the loadings for all the 

conditions were averaged across PCA components 1 to 3. The results of this averaging are 

shown in Figure 7.4.  
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Figure 7.3. Results of the Spectral PCA Analysis. Rectified mean loading patterns for PCA components 1, 2 and 3 are shown from left to right. The four 

speaking conditions are shown in different coloured lines. The amount of variance accounted for by each PCA component, for each speaking condition is 

shown in the title of each plot. This amount is the average across 6 speakers. Vertical dotted grey lines indicate the boundaries between the five spectral 

bands at 300 Hz, 700 Hz, 1750 Hz and 3900 Hz. White arrows indicate spectral regions where CDS samples load more strongly than ADS samples. Grey 

arrows indicate spectral regions where ADS samples load more strongly than CDS samples. 
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b. Averaged Principal Component Loadings (Components 1-3) 

 In the averaged loading patterns shown in Figure 7.4, the trends differentiating CDS 

and ADS conditions are now clear and consistent. CDS conditions (yellow and red lines) 

loaded more strongly than ADS conditions (blue and green lines) at higher spectral 

frequencies (e.g. spectral bands 3 & 5), but loaded less strongly at lower spectral frequencies 

(e.g. spectral bands 1 & 2). It is also interesting to note that the overall order of the 4 

speaking conditions was systematically preserved at both ends of the frequency spectrum, 

suggesting a parametric change between conditions. At high spectral frequencies, CDS Story 

loadings were the strongest, followed by CDS Rhyme, ADS Rhyme and ADS Conversation. 

At low spectral frequencies, this order was reversed, with ADS Conversation showing the 

strongest loadings, followed by ADS Rhyme, CDS Rhyme and CDS Story
27

.  

 However, the interpretation of these loading patterns requires careful consideration. 

Recall that in the previous section, the RMS power over the 28 spectral channels had been 

computed. This power spectrum is shown again in the bottom half of Figure 7.4, where it can 

be directly compared with the PCA loading patterns. It may be observed that the higher 

component loading for CDS samples in spectral band 3 is accompanied by a relative boost in 

RMS power in this spectral band (grey arrow). Similarly, the drop in component loading for 

CDS samples in spectral band 1 is also accompanied by a drop in RMS power in this spectral 

band (grey arrow). However, the higher component loading for CDS samples in spectral band 

5 is not accompanied by an increase in RMS power. Rather, in spectral band 5, the RMS 

power for CDS samples decreases relative to ADS samples (grey dotted arrow). 

 Therefore, in CDS samples (Story & Rhyme), there is a relative 'boost' at middle 

spectral frequencies (~1200 Hs, spectral band 3) as compared to low spectral frequencies 

(<300 Hz, spectral band 1).  This boost occurs for both RMS power (i.e. middle frequency 

sounds like vowels are louder), as well as for component loading strength (middle frequency 

modulation patterns are more similar). However, at very high spectral frequencies (>3900 Hz, 

spectral band 5), component loadings again increased in CDS, but this is now accompanied 

by a drop in RMS power (i.e. high frequency sounds like fricatives are softer).  

 

                                                 
27

 This order of CDS and ADS conditions was also observed in RMS power differences for the 29 spectral 

channels in Section 7.2.1.1 
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Figure 7.4. (top) Mean rectified loadings averaged over PCA Components 1 to 3. The 4 speaking conditions are 

shown in different coloured lines. Vertical lines indicate the boundaries of the five spectral bands. (bottom) 

RMS power of the 28 spectral channels, replicated from Figure 7.2. Solid arrows indicate spectral regions 

where strength of component loading across conditions is positively correlated with RMS power. Dotted arrow 

indicates a spectral region where strength of component loading is negatively correlated with RMS power. 

 

          Band 1                 Band 2                Band 3               Band 4              Band 5 
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c. Interim Summary & Discussion of Spectral PCA Results 

 Both child- and adult-directed speech shared the same fundamental spectral band 

structure of 5 major spectral bands. The frequencies contained in the 5 spectral bands are 

listed in Table 7.3, as a reminder.  

 

Table 7.3. 5 spectral bands, as identified in Chapter 4 

 

 

 

 

  

 

 However, CDS speech samples showed a specific boost in spectral RMS power and 

PCA component loading strength at middle spectral frequencies around 1200 Hz, suggesting 

that vowel sounds may be particularly emphasised in CDS. This result is consistent with the 

finding that vowel sounds in child-directed speech are hyperarticulated, or more separated in 

formant space (Ratner, 1984; Burnham et al, 2002). Here, these results suggest that the vowel 

sounds in child-directed speech are also relatively louder, and more strongly co-modulated 

(i.e. contain similar patterns of modulation across the channels in each band). 

 In contrast, CDS showed a relative reduction of RMS power for very high frequency 

(>3900 Hz) and very low frequency sounds (<300 Hz), even though high frequency sounds 

also showed increased co-modulation. This suggested that while high frequency sounds (like 

fricatives) were softer in CDS, they still contained strong and consistent modulation patterns.  

   

 

 

  

Spectral Band Frequency Range  (Hz) 

Band 1  100-300 

Band 2 300-700 

Band 3  700-1750 

Band 4  1750-3900 

Band 5 3900-7250 
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7.2.2 MODULATION RATE PCA ANALYSIS 

 

 The aim of this next part of the analysis was to investigate whether CDS and ADS 

samples differed in their modulation spectrum, or their modulation rate structure (i.e. the 

number of non-redundant modulation rate bands).  

 

7.2.2.1 Modulation Spectrum  (RMS Power Across Modulation Channels) 

 Since the speech samples across the 4 conditions had the same 5-Band spectral 

structure, all the samples were filtered into 5 spectral bands, and Hilbert envelopes were 

extracted from each spectral band. These envelopes for each spectral band were then passed 

through a 24-channel modulation filterbank. Figure 7.5 shows the mean RMS power
28

 at each 

modulation channel (i.e. the modulation spectrum), for each of the 5 spectral bands (top 

plots), as well as the grand mean over the 5 spectral bands (bottom plot). Vertical lines 

indicate the boundaries between 'Stress', 'Syllable' and 'Phoneme' modulation bands.  

 From visual inspection of the grand mean plot (bottom), CDS samples (red and 

yellow lines) appeared to have higher power in the Stress modulation band, and slightly 

lower power in Syllable and Phoneme modulation bands. This suggests that in child-directed 

speech, speakers tended to place relatively greater emphasis on the slower stress patterns, 

than on the faster syllable and phoneme-rate patterns. To examine whether there were also 

differences in the modulation structure of CDS and ADS samples, a PCA analysis was 

carried out using the 24-modulation channels. 

 

 

 

 

 

                                                 
28

 Since the overall RMS power differed across samples and speakers (i.e. some speakers were speaking more 

loudly than others), for each sample, the average power across all 24 modulation channels was subtracted from 

each channel, leaving only the difference in power from the average power for each modulation channel. This 

difference power was then averaged over samples and speakers to give the results shown in Figure 7.5. 
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Figure 7.5. Modulation spectrum for each spectral band (top) and averaged over all spectral bands 

(bottom). Coloured lines indicate the 4 speaking conditions. Shaded areas indicate the standard error of 

the mean for each condition. Vertical dotted lines indicate the boundaries of the 3 modulation rate bands. 

 

 

7.2.2.2 Modulation Rate PCA Analysis  

 The modulation rate PCA analysis was carried out separately for each of the 5 spectral 

bands. Figure 7.6 shows the mean PCA loading patterns for the top 3 components, for each 

spectral band (top half of figure), as well as averaged over the 5 spectral bands (bottom half 

of figure). The top 3 principal components cumulatively accounted for almost 80% of the 

total variance in the samples. The variance accounted for by each principal component is 

indicated in the titles of the bottom plot of Figure 7.6.  

    Stress                            Syllable                            Phoneme 
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Figure 7.6. Results of the Modulation Rate PCA Analysis. (top) Mean rectified loading 

patterns for each spectral band are shown in columns, PCA components 1 to 3 are shown in 

rows (bottom) Grand mean component loading patterns, averaged across spectral bands 1 to 

5. The vertical lines in the plots indicate the boundaries between the 3 modulation rate bands 

at 2.5 Hz and 12 Hz. White arrows indicate inconsistencies in the order of loading strength 

across the 4 conditions, observed within the same modulation rate band. 
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 In Figure 7.6, the x-axis plots the centre frequency for each modulation channel and 

the y-axis plots the absolute (rectified) component loading, averaged across all samples and 

speakers. Each of the 4 speaking conditions is shown in a different colour.  

 From visual inspection, the loading patterns were again highly similar across all 4 

speaking conditions. The locations of major peaks and troughs (indicating modulation band 

boundaries) were also very similar across the four conditions, coinciding well with the band 

boundaries previously identified in Chapter 4 (see Figure 4.5). These previously-identified 

modulation band boundaries are shown as vertical dotted lines. This suggests that the basic 

modulation band structure of the speech samples was again similar across the four speaking 

conditions, and agreed well with the band boundaries that had previously been identified.  

 Although there were small differences in the loading pattern between conditions at 

certain modulation frequencies, these differences did not appear to be systematic. For 

example, in the grand mean plot for PCA component 1 (bottom left subplot), CDS Rhyme 

loaded the most strongly in the Phoneme Band, and CDS Story loaded the most weakly 

(indicated with the white arrow). However, for the same Phoneme Band in PCA component 3 

(bottom right subplot), this pattern was reversed, with CDS Story now loading the most 

strongly, while CDS Rhyme loaded weakly (white arrow).  

 Therefore, since there were no large, consistent differences between the four speaking 

conditions in terms of their principal component loading pattern, the same band structure of 3 

modulation rate bands ('Stress', 'Syllable' and 'Phoneme') was applied to all 4 speaking 

conditions. The modulation rates contained in the 3 modulation rate bands are listed in Table 

7.4, as a reminder. 

 

Table 7.4. 3 modulation rate bands, as identified in Chapter 4 

 

 

  

Modulation Rate  Band Modulation Range  (Hz) 

Stress 0.9 - 2.5 Hz 

Syllable 2.5 - 12 Hz 

Phoneme 12 - 40 Hz 
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7.2.3 INTERIM SUMMARY OF SPECTRAL & MODULATION RATE PCA RESULTS 

 

 To summarise the PCA results, all 4 types of speech were well-described by the same 

spectro-temporal structure of 5 spectral bands and 3 modulation rate bands (forming a 3-tier 

AM hierarchy).  

 However, there were also differences between the CDS and ADS samples that 

occurred within these spectral or modulation rate bands. In the spectral domain, CDS samples 

showed a boost at middle frequencies around 1200 Hz (spectral band 3), consistent with a 

greater emphasis on vowel sounds. In the modulation rate domain, the modulation spectrum 

of CDS showed slightly higher RMS power than ADS at Stress rates, but lower power at 

Syllable and Phoneme rates.  

 In the next section, the 3 tiers of the AM hierarchy (Stress, Syllable & Phoneme tiers) 

are analysed in terms of their (1) rhythmic regularity (periodic power); and  (2) hierarchical 

organisation (peak-phase distribution).   
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7.2.4 AM HIERARCHY ANALYSIS 

 

7.2.4.1 Rhythmic Regularity (Periodic Power) 

 

 The rhythmic regularity of the three tiers in the AM hierarchy was analysed by 

computing the autocorrelation function (ACF) of each modulation tier (Stress, Syllable and 

Phoneme), and then computing the periodic power spectrum of the resulting ACFs. It was 

expected that when reading nursery rhymes, speaker's utterances should be more 

rhythmically-regular than when reading narrative stories or producing spontaneous 

conversation. However, it was not known whether the CDS Story readings would be more or 

less rhythmically-regular than the ADS Conversation samples.  

 Figure 7.7 shows the periodic power spectrum obtained for each of the 3 modulation 

tiers, for each speaking condition. The bottom panel of Figure 7.7 shows the power spectra 

for each spectral band, and the top panel shows the average power spectrum taken across 

spectral bands 1-4 (spectral band 5 was excluded from the average since it would contain 

high frequency sounds like fricatives, which, from Chapter 4, detracted from the overall 

rhythm of the utterance).  

 As predicted, both 'Rhyme' speech samples (CDS Rhyme in red and ADS Rhyme in 

blue) contained much higher periodic power than the non-poetic ADS Conversation samples 

(green). This higher periodicity was observed for all 3 modulation tiers. However, 

surprisingly, child-directed Story samples (in yellow) showed as much periodicity as the 

nursery rhyme readings for all 3 modulation tiers. This suggested that speakers were 

'unconsciously' patterning their utterances rhythmically when addressing children, even when 

the material they were reading was non-poetic. It is remarkable that this CDS-related 

rhythmic patterning of stories was so strong that it was similar to that of the metrically-

regular nursery rhymes.  
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Figure 7.7. Periodic power for the autocorrelation function of each modulator tier. (Top) 

Mean power spectrum averaged over spectral bands 1 to 4. (Bottom) Power spectra for each 

Spectral band (rows), for each modulation tier (columns). 

 

 

Stress Syllable Phoneme 
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7.2.4.2 Hierarchical Organisation (Peak-Phase Distribution Pattern) 

 

 Finally, the hierarchical organisation of CDS and ADS samples was analysed by 

computing their Syllable peak-Stress phase distributions and Phoneme peak-Syllable Phase 

distributions. The average peak-phase distribution for each speaking condition is shown in 

the top panel of Figure 7.8. To compute this average distribution pattern, the distributions for 

spectral bands 1-4 were averaged together (spectral band 5 was discarded, as was done for the 

autocorrelation analysis). Plots on the left relate to the Syllable peak-Stress phase 

relationship, and plots on the right relate to the Phoneme peak-Syllable phase relationship. 

 Visual inspection of the Syllable peak-Stress phase distribution pattern (top left plot) 

indicates that the CDS Story distribution had the highest kurtosis ('peakedness'), with the 

largest proportion of Syllable peaks concentrated around the peak of Stress phase (0π 

radians). The distribution with the next highest kurtosis was CDS Rhyme, followed by ADS 

Rhyme and ADS Conversation. As explained in Appendix 7.2, the kurtosis of the distribution 

pattern is directly related to its entropy, where flat (rectangular) distributions are associated 

with the highest entropy and distributions with high kurtosis have low entropy.  

 Next, the conditional entropies (CE) for each average distribution were computed, for 

each speaking condition. The middle and bottom panels of Figure 7.8 show the computed 

conditional entropies for each speaking condition as a bar graph (middle panel), and in a table 

(bottom panel) respectively. As expected from the shape of their distributions, CDS Story had 

the lowest conditional entropy followed by CDS Rhyme and ADS Rhyme. ADS 

Conversation had the highest entropy values. Recall that lower CE values indicate stronger 

hierarchical phase-nesting (i.e. phase in the slower tier exerts a stronger constraint on the 

occurrence of peaks in the faster tier).  

 To analyse these differences statistically, a repeated measures ANOVA was 

conducted on the Stress phase-Syllable peak conditional entropy scores with Style (CDS or 

ADS) and Material (Rhyme or Narrative) as factors. Results indicated a strong significant 

main effect of Style (F(1,5) = 18.90, p<.01), with child-directed speech samples significantly 

lower in conditional entropy than adult-directed speech samples. There was no significant 

effect of Material (F(1,5) = 0.07, p=.81), but there was a significant interaction between Style 

and Material (F(1,5) = 6.96, p<.05).  
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Figure 7.8. (Top) Hierarchical distribution of peaks for each modulator tier with respect to the 

phase of the upper tier. The left plot shows the distribution of Syllable peaks with respect to 

Stress phase. The right plot shows the distribution of Phoneme peaks with respect to Syllable 

phase. The distributions shown are the mean distributions across of spectral bands 1-4. (Middle) 

Corresponding conditional entropy scores for the distribution pattern of each speech corpus. 

Distributions with higher kurtosis have a lower entropy while distributions with lower kurtosis 

have a higher entropy. Errorbars show the standard error across 6 speakers. (Bottom table) 

Mean CE scores for each speech corpus. 

 

CE (bits) Stress Phase-Syll Peaks Syllable Phase-Phon Peaks 

CDS Rhyme 0.2203 0.2304 

ADS Rhyme 0.2206 0.2304 

CDS Story 0.2171 0.2291 

ADS Conv 0.2245 0.2292 
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 A Tukey HSD post-hoc analysis of the Style x Material interaction indicated that 

Narrative materials showed a stronger CDS-ADS difference than Rhyme materials. This was 

not surprising since, as previously noted, participants may have found it difficult to produce 

nursery rhymes in an adult-directed manner rather than a child-directed manner. Although the 

difference between ADS Rhymes and CDS Rhymes was very small (CDS : 0.2203 vs ADS : 

0.2206), this difference was in the predicted direction, with CDS Rhymes showing lower 

conditional entropy than ADS Rhymes. 

 The same repeated measures ANOVA was then conducted with conditional entropy 

scores for the Phoneme peaks-Syllable phase distribution (right column in Figure 7.8). This 

time however, none of the main effects (Style or Material) were significant, and the 

interaction between Style and Material was also non-significant. Moreover, in paired-samples 

t-tests, none of the pairs of conditions (speech corpora) showed significant differences. 

Therefore hierarchical phase-nesting in CDS was significantly greater than ADS for the 

Stress-Syllable relationship, but not for the Syllable-Phoneme relationship. 

 In the Syllable peak-Stress phase analysis, the largest difference in entropy was 

between CDS Story and ADS Conversation corpora. Since the CDS story material was 

scripted (participants read out a printed text), while the ADS conversation material was 

unscripted and spontaneous, it is possible that 'scripting' was a confound in the experimental 

design. For example, it might be argued that the entropy differences observed here could 

reflect the degree of syntactic organisation and well-formedness in scripted versus 

spontaneous utterances, rather than child- or adult-directedness per se. However, if the degree 

of structure and organisation in the utterance was the main determinant of entropy, one would 

expect nursery rhymes to show the most structure and therefore the lowest entropy. Instead, 

child-directed stories had a significantly lower entropy than the tightly structured CDS 

nursery rhymes (paired t-test, t(5) = 8.49, p<.001), indicating that entropy scores were being 

driven by a factor other than regular syntactic structure.  

 Moreover, all 6 speakers produced ADS spontaneous utterances that were well-

formed and grammatically correct. Although their conversation material was not scripted, the 

topics were familiar to participants (e.g. their hobbies) and they had had time to plan their 

utterances before the recording session began. Therefore, even though the ADS conversation 

samples were unscripted, they were still well-structured utterances. Finally, even when the 

speech material was matched exactly, and fully scripted (as with ADS and CDS Rhymes), 
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entropy differences still occurred in the predicted direction, although these differences were 

small and not statistically significant. The influence of scripting can be investigated further in 

a new experiment, however that is beyond the scope of this thesis.  

 

7.3 RESULTS SUMMARY & DISCUSSION 

 

 There were strong similarities as well as clear differences between child- and adult-

directed speech samples. In terms of similarities, the PCA analyses indicated that both CDS 

and ADS samples were well-represented by a dimensionally-reduced 5x3 spectro-temporal 

structure. This suggests that the 5x3 spectro-temporal structure identified in this thesis may 

be a fairly robust and ubiquitous way to represent the spectro-temporal variation inherent in 

the speech signal. Even when speakers are consciously modifying the way they speak, these 

changes occur within the bounds of the 5x3 spectro-temporal bands, rather than changing the 

boundaries between the bands entirely. 

 For example, in the spectral domain, CDS samples showed a 'boost' in RMS power 

and PCA component loading that was well-located to spectral band 3 (middle spectral 

frequencies ~1200 Hz). Since vowels sounds commonly contain energy in this spectral 

region, this middle-frequency boost is interpreted as indicating a greater emphasis on vowel 

sounds in child-directed speech. This vowel emphasis was associated with both increased 

loudness (RMS power), as well as stronger co-modulation. Such exaggeration of vowel 

sounds in CDS is thought to be a didactic device for teaching language to children, since 

speech directed to pets does not show evidence of vowel hyperarticulation (Burnham et al, 

2002). 

 In the modulation rate domain, CDS Story and CDS Rhyme samples were both 

strongly periodic at all 3 Stress, Syllable and Phoneme modulation rates. While ADS Rhymes 

also showed strong periodicity, ADS Conversation samples did not. Therefore, child-directed 

speech possessed strong periodic regularity even when the spoken material itself was non-

poetic. In contrast, ADS speech for non-poetic material (ADS Conversation) had a much 

lower periodic regularity. Finally, in the hierarchical peak-phase distribution analysis of the 3 

modulation rate bands, CDS showed stronger hierarchical phase-nesting than ADS (as 
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measured using conditional entropy). However, this only occurred for the Syllable peak-

Stress phase relationship.  

 Child-directed utterances could be more rhythmically regular in order to facilitate 

speech segmentation by the young listeners. If words are regularly-stressed, and syllables are 

produced at regular intervals, the word boundaries would also be more predictable in time, 

allowing children to more accurately locate these important boundaries. Similarly, the lower 

Stress-Syllable entropy (and stronger phase-nesting) in child-directed speech could also 

indicate that prosodic boundaries are more frequently marked by stress  in CDS. According to 

the S-AMPH model, syllable peaks occurring near the peak of the Stress cycle are 'Strong' 

stressed syllables, while Syllable peaks that occur near the trough are 'weak' syllables. By this 

view, the highly-kurtotic distribution associated with the lower entropy of CDS Story 

samples implies that more syllables (proportionately) are stressed in stories than in nursery 

rhymes.  

 In nursery rhymes, the strict metrical structure imposes constraints on the placement 

of syllable stress. For example, in duple beat rhymes, stress typically occurs every 2, 4 or 8 

syllables, but cannot occur on consecutive syllables. In continuous prose however, speakers 

do not have such constraints. Therefore, they would be 'allowed' to place stress on 

consecutive syllables for the purpose of emphasis. In the CDS Story samples, they may be 

doing this relatively often (e.g. "LI-ttle PIG, LI-ttle PIG, LET ME COME IN!"). According 

to this explanation, CDS Story samples would have the highest proportion of stressed 

syllables, followed by the nursery rhymes. ADS conversation samples would have the lowest 

proportion of stressed syllables. Therefore, if young children were to use a metrical 

segmentation strategy in which strong syllables were perceived as potential word boundaries 

(Cutler & Norris, 1988), they would find many more word boundaries in CDS than in ADS 

using this method. This suggests that in CDS, adult speakers could be helping child listeners 

with the task of speech segmentation by strongly signaling word and phrase boundaries 

through stress, and by placing syllables and words at rhythmically-regular intervals. Such 

word boundary exaggeration could help the child to segment words from the speech stream 

more easily, facilitating speech comprehension and new vocabulary acquisition. Therefore, 

the rhythmic adaptations seen in CDS are especially suited for the language needs and 

abilities of the young listener.  
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 Another point to address is why the difference in entropy between CDS and ADS only 

occurs for the Stress-Syllable interface, and not for the Syllable-Phoneme interface. If the 

speech segmentation explanation is accepted, then it follows that young children do not need 

to segment phonemes from syllables for speech comprehension (although children taught 

alphabetic orthographies do learn to do this later on as they become literate readers, see 

Ziegler & Goswami, 2005). Therefore adults do not need to emphasise phonemes to children, 

and the Syllable-Phoneme phase relationship and distribution remains the same across both 

CDS and ADS samples. If adults exaggerate what is necessary for speech segmentation in 

CDS, this suggests that child-directed speech in different languages may show different 

properties, depending on the cues used for segmentation in that language. For example, 

children learning syllable-timed languages like French, Spanish or Italian may indeed benefit 

from exaggeration in the Syllable-Phoneme relationship, since stress is not as strong a cue for 

word segmentation in these languages. Therefore, one might predict a lower entropy in the 

Syllable-Phoneme distribution in French, Spanish and Italian CDS as compared to ADS. 

 Finally, in the entropy and autocorrelation analyses, ADS Rhyme was not 

substantially different from CDS Rhyme. However, in the Spectral PCA analysis, Spectral 

PCA loading patterns were clearly differentiated for ADS Rhyme and CDS Rhyme samples. 

This suggests that speakers were not as successful in differentiating ADS nursery rhymes 

from CDS nursery rhymes in terms of rhythmic structure, and relied more on changing the 

spectral structure (e.g. pitch) of their utterances. Indeed, several participants commented that 

the natural rhythmic structure of the nursery rhymes was very strong, and they found it hard 

to suppress this in the ADS rendition. Therefore, the ADS rendition of nursery rhymes was 

only partially successful since it was neither truly devoid of CDS characteristics, nor fully 

representative of typical adult speech. Therefore, in future experiments comparing ADS to 

CDS, it might be better to use neutral sentences that are not inherently biased toward a child 

or adult audience.  
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8   SPEECH RHYTHM PERCEPTION AND 

PRODUCTION IN DEVELOPMENTAL DYSLEXIA 
 

 Developmental dyslexia is associated with phonological difficulties and also with 

rhythmic difficulties in speech and music tasks (e.g. Huss et al, 2011). In speech, rhythm-

bearing syllable and prosodic stress patterns are associated with slow amplitude modulations 

(AM) in the speech envelope. Consequently, dyslexics' rhythm deficits may be associated 

with impaired perception and production of these slow AMs in the speech envelope. Recall 

that in Section 1.11 of the Introduction, the syllable stress experiment conducted by Leong et 

al (2011) had linked participants' auditory sensitivity to onset rise times to deficits in syllable 

stress perception. The amplitude rise time parameter measured in previous studies (e.g. 

Goswami et al, 2002; Goswami et al, 2011; Huss et al, 2011) may be thought of as the 

upward-going half of the oscillatory AM cycle (i.e. -π to 0 radians phase). Since the rise 

times of tone stimuli used by Goswami and colleagues varied between 15ms to 300ms, the 

corresponding AM rates for these rise times would be 1.7-33 Hz (taking the full AM cycle 

length to be twice the rise time length). For the original AMPH hierarchy, this range of AM 

rates included the Stress, Syllable and Subbeat tiers, as well as half of the Fast tier. For the S-

AMPH hierarchy, the 1.7-33 Hz range covers the Stress and Syllable tiers, as well as almost 

the entire Phoneme tier. Therefore, in this study, dyslexics' speech rhythm perception and 

production was measured in each of these AM tiers, to see if the dyslexic problem could be 

more specifically pinpointed to a particular AM tier or tiers. Accordingly, this would 

implicate speech processing of those specific linguistic unit or units. 

 In this chapter, 3 AM-based speech rhythm perception and production experiments 

are presented. Each of these experiments used the same 4 metrically-regular nursery rhyme 

sentences as experimental stimuli, and the same group of dyslexic and non-dyslexic adults as 

participants. In each experiment, the AMPH or S-AMPH model was used as an analysis 

framework alongside traditional methods of analysis. In Experiment 1, perception of rhythm 

in speech was examined, where the rhythm was provided by AM patterns only (i.e. tone-

vocoding). In Experiment 2, motor entrainment (tapping) to AM patterns in speech was 

examined. In Experiment 3, rhythmic production of speech was investigated, with emphasis 

placed on the AM patterns in the produced utterances. To examine the specific relationship 

between individual differences in rhythm perception and production, and reading-related 
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skills, a battery of tasks measuring other cognitive correlates of reading was also 

administered. These included standard abilities tests (IQ, memory), phonological awareness 

measures and psychoacoustic threshold measures for detecting change in acoustic rise time, 

frequency, intensity and duration. Reading and spelling were also measured. 
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8.1 METHODS 

 

8.1.1 PARTICIPANTS 

  

 A total of 21 adults with dyslexia (9 M, 12 F), and 22 adults without dyslexia (7 M, 

15 F) participated in the study. Dyslexic participants had a formal statement of developmental 

dyslexia, were native English speakers, and had no other documented learning disabilities. 

Dyslexic and non-dyslexic control groups were matched for age, verbal and non-verbal 

intelligence. Participants were recruited by advertisement in the Cambridge Graduate Union 

Bulletin, and were students at the University of Cambridge. Informed consent was obtained 

from each participant, and each participant was paid £15 for participating in the study. The 

consent form and background information form used in this study are shown in Appendix 8.1. 

 

8.1.2 TASK SUMMARY 

 

 Each participant completed the 3 speech rhythm tasks, and another 4 sets of tasks. All 

the tasks used in the study are summarised in Table 8.1.  

Table 8.1. Summary of Tasks Used in the Dyslexia Study 

Task Battery 
No. of 

Tasks 
Names of Tasks 

a. Standardised Ability Tests 3 
WASI Block Design & Vocabulary  

WAIS-R Digit Span 

b. Reading and Spelling Tests 4 
WRAT Reading and Spelling 

TOWRE Word & Non-Word Reading 

c. Phonological Awareness Measures 3 
Spoonerisms 

RAN Dense & Sparse 

d. Psychoacoustic Threshold Measures 4 
'Dino' Rise Time, Frequency, Intensity 

and Duration 

e. AM-Based Speech Rhythm     

Perception & Production Tasks 
3 

Expt 1 Rhythm Perception 

Expt 2 Rhythm Entrainment 

Expt 3 Rhythm Production 
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 To improve the flow of the chapter, a description of the general ability, literacy, 

phonology and psychoacoustic tasks (a-d) will be followed immediately by the results for 

these tasks (a-d). After this, the three AM-based rhythm experiments (e) will be described. 

Each experiment description will be followed directly by the results of that rhythm 

experiment. 

 

8.2 GENERAL ABILITY, LITERACY, PHONOLOGY & 

PSYCHOACOUSTIC MEASURES 

 

8.2.1 TASK DESCRIPTION 

 

a. Standardised Ability Tests 

 i. Non-Verbal and Verbal Intelligence. All participants completed 2 subscales of the 

Wechsler Abbreviated Scale of Intelligence (WASI; Weschler, 1999), a nonverbal subscale 

(Block Design) and a verbal subscale (Vocabulary). In the Block Design task, participants 

were shown a picture of a geometric shape, and had to construct the shape using individual 

coloured blocks as quickly as possible. The coloured blocks each had two completely red 

faces, two completely white faces, and two faces that were half red and half white (split 

diagonally). Initially the pictures could be constructed using only 4 blocks, but later required 

9 blocks. Participants constructed 10 designs in total, and were scored according to the time 

taken to complete each design (0 to 7 points). In the Vocabulary task, participants were 

verbally presented with a word such as "intermittent", and were asked to provide a verbal 

definition of the word. Participants were scored according to a pre-set list of accepted 

definitions, and could obtain a score of either 0, 1 or 2 points for each of 42 words. The two 

subscale raw scores were then converted into standardised T-scores according to the age of 

the participant. 

 ii. Auditory short-term memory. The Weschler Adult Intelligence Scale-Revised 

forward digit span subtest (WAIS-R; Weschler, 1981) was administered as a measure of 

auditory short-term memory. In this task, participants heard a sequence of digits and had to 

repeat the digits back to the experimenter in the same order that they were presented. 

Initially, the sequence comprised just 2 digits (e.g. "1 - 7"), but the sequences grew in length 
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up to 9 digits (e.g."2 – 7 – 5 – 8 – 6 – 2 – 5 – 8 – 4").  In the presentation phase, the digits 

were spoken by the experimenter at a pace of 1 digit per second, with a neutral affect. In the 

recall phase, participants were free to speak as quickly as they wished. Participants scored 1 

point for each sequence that they recalled correctly with no mistakes, and the task was 

stopped after the participant failed on two consecutive trials. The maximum score for this 

task was 16. 

 

b. Reading and Spelling Tests 

 Literacy skills were assessed using the untimed Wide Range Achievement Test 

(Reading and Spelling scales, WRAT-III, Wilkinson, 1993) and the timed Test of Word 

Reading Efficiency (TOWRE, Single Word Efficiency [SWE] and Phonological Decoding 

Efficiency [PDE], Torgesen, Wagner, Rashotte, 1999).  

 In the WRAT Reading test, participants were shown a list of 42 words and had to read 

the words aloud as clearly as possible, with no restrictions on time. The words were of 

increasing difficulty (with "in" as item 1 and "terpsichorean" as item 42). Participant were 

scored 1 point for each word that they read correctly, with a maximum raw score of 42. In the 

WRAT Spelling task, participants had to spell a total of 40 words of increasing difficulty 

(from "and" as item 1 to "vicissitude" as item 40). Each of these words was presented orally 3 

times - one time on its own, one time used in a sentence, and the last time on its own again. 

For example, for the word "lucidity", participants heard "Lucidity. We think best in moments 

of lucidity. Lucidity". Participants received 1 point for each word that they spelled correctly, 

for a maximum total raw score of 40. The raw scores were then converted into standardised 

scores according to the age of the participant.  

 In the two TOWRE tasks, participants were presented with a list of words (or non-

words), and had to read aloud as many items as they could within 45 seconds. Prior to 

starting the timed task, participants were given a short practice list of words to read, e.g. "on, 

my, bee, old, warm, bone, most, spell" (TOWRE Word), and "ba, um, fos, gan, rup, nasp, 

luddy, dord" (TOWRE Non-word). The words in the actual test list were sorted in order of 

increasing length, going from 1-syllable words at the beginning to 3-syllable words at the 

end. Participants were told to read the words quickly but clearly. They received 1 point for 

each item that was correctly read. The maximum score for TOWRE Word was 104, and the 

maximum score for TWO Non-word was 63. 
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c. Phonological Awareness Measures 

 i. Spoonerisms. This task was drawn from the Phonological Assessment Battery 

(PhAB; Fredrickson, ed., 1997). There were two parts to the task. In the first part, participants 

heard 10 single words presented orally by the experimenter. They were asked to replace the 

onset phoneme(s) of each word with a different phoneme(s). For example, the experimenter 

said "cot with a /g/ gives..." and the correct reply from the participant would have been "got". 

In the second part of the task, participants heard 10 pairs of words instead of single words. 

Participants were asked to swap the onset phonemes of the pair of words (e.g. for “sad cat”; 

the participant responded “cad sat”). Participants received 1 point for each correct response 

in the first part of the task, and a maximum of 2 points for each correct response in the second 

part of the task. Therefore scores on this measure were out of a possible 30 points.   

 ii. RAN (Rapid Automatized Naming). Two versions of an object RAN task designed 

originally for children were administered. One version was based on pictures of objects 

whose names resided in dense phonological neighbourhoods (RAN Dense: Cat, Shell, Knob, 

Thumb, Zip). The other version was based on pictures of objects whose names resided in 

sparse phonological neighbourhoods (RAN Sparse: Web, Dog, Fish, Cup, Book). Participants 

were shown a sheet of paper with the same pictures repeated 50 times, arranged in a grid. In 

each case, they were asked to name the pictures in order, as quickly and accurately as 

possible. It was expected that words from dense neighbourhoods would take longer to 

produce. Performance was timed, and the final score was the time taken (in seconds) for 

participants to complete naming all the pictures in the grid.  

 

d. Psychoacoustic Threshold Measures 

 These 'Dino' tasks were designed to measure participants' ability to discriminate small 

acoustic changes in a single auditory dimension. The four auditory dimensions measured 

were rise time, frequency, intensity and duration. Acoustic changes in these four dimensions 

cue prosodic stress in speech. For example, stressed syllables are characterised by higher 

pitch, higher intensity, longer duration and longer rise times as compared to unstressed 

syllables (Leong et al, 2011). The auditory tasks were programmed for this study by Martina 

Huss, and were originally designed to be used with children. The name of the tasks ('Dino') 

derives from the cartoon animals used in the presentation of the acoustic stimuli. The tasks 

were designed to assess participants' threshold for a just-noticeable difference (JND) on each 
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dimension, via an adaptive staircase procedure (Levitt, 1971). In this procedure, participants 

initially heard stimuli that had a large acoustic difference. If these were correctly 

discriminated, the acoustic gap on subsequent trials was narrowed (making the trials more 

difficult) until the participant gave an incorrect response (a 'reversal'). At this point, an easier 

trial (with a larger difference) was presented. This procedure therefore adapted to the 

performance of the individual by shifting the difficulty of trials up or down. In the Dino task, 

a combined 2-up 1-down
29

 and 3-up 1-down procedure was used; after 2 reversals (i.e. 

incorrect responses), the 2-up 1-down staircase procedure changed into 3-up 1-down. The 

step size was halved after the 4th and 6th reversal so that difficulty would increase in smaller 

steps as the participant neared his or her JND threshold. A test run typically terminated after 

8 response reversals or alternatively after a maximum of 40 possible trials was completed. 

Four attention trials were randomly presented during each test run, using the maximum 

contrast of the respective stimuli in each auditory task. The threshold score achieved was 

calculated using the mean of the last four reversals. All psychoacoustic stimuli were 

presented binaurally at 74 dB SPL using Sennheiser HD 580 headphones. 

 i. Amplitude Envelope Onset (Rise Time) Task (1 Rise). This was a rise time 

discrimination task in AXB format. Three 800 ms tones were presented on each trial, with 

500 ms ISIs. Two (standard) tones had a 15 ms linear rise time envelope, 735 ms steady state, 

and a 50 ms linear fall time. The third tone varied the linear onset rise time logarithmically, 

with the longest rise time being 300 ms. Participants were introduced to three cartoon 

dinosaurs. It was explained that each dinosaur would make a sound and that the task was to 

decide which dinosaur's sound was different from the other two and had a softer rising sound  

(longer rise time). As an integral part of the software programme, feedback was given after 

every trial on the accuracy of performance. Schematic depiction of the stimuli can be found 

in Richardson et al. (2004). 

 ii. Frequency task. This was a frequency discrimination task delivered in a 2IFC 

format. The standard was a pure tone with a frequency of 500 Hz presented at 74 dB SPL, 

which had a duration of 200 ms. The maximum pitch difference between the stimuli 

presented in this task was 60 Hz. Participants were introduced to two cartoon elephants. It 

was explained that each elephant would make a sound and that the task was to decide which 

elephant’s sound was higher in pitch. 

                                                 
29

 Difficulty is shifted up after 2 consecutive correct responses, but shifted down after just one incorrect 

response. 
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 iii. Intensity task. This was an intensity discrimination task also delivered in a 2IFC 

format. The standard was a pure tone with a frequency of 500 Hz presented at 74 dB SPL, 

which had a duration of 200 ms. The intensity of the second tone ranged from 54 to 74 dB 

SPL. Participants were introduced to two cartoon mice. It was explained that each would 

make a sound, and the task was to decide which sound was softer.  

 iv. Duration task. This was a duration discrimination task delivered in an AXB 

format. It was explained that each dolphin would make a sound and the task was to decide 

which sound was different in length (longer) as compared to the other two. The (two) 

standard sounds had a duration of 125 ms. The third tone varied linearly in duration from 125 

ms to 250 ms. All sounds were pure tones at 500 Hz and had a 5 ms rise and fall time. 

 

8.2.2 RESULTS 

 

 Participants' performance on all the non-rhythm tasks (a-d) are shown in Table 8.2. 

One-way ANOVAs were used to compare the scores of control and dyslexic participants. 

Table 8.2 shows the group means for each test, and the results of the one-way ANOVA for 

group differences, with significant differences highlighted in blue. For each variable, where 

the assumption of homogeneity of variances is violated (Levene's test p<.05), the Welch's 

statistic and p-value is reported instead. As shown in Table 8.2, control and dyslexic groups 

were matched for age, verbal and non-verbal IQ. As expected, dyslexic participants 

performed significantly more poorly than controls on all reading, spelling and phonological 

measures. They also showed a significant short-term memory deficit. These results confirmed 

that our recruited dyslexic cohort did indeed have significant reading and phonological 

problems. For the psychoacoustic threshold measures, dyslexic participants showed a 

significantly lower sensitivity (higher threshold) for intensity detection, but not for detection 

of rise time, frequency or duration. 
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Table 8.2. Summary of Task Results (a-d) and One-Way ANOVA Tests 

Task 

 

Controls 

 

Dyslexics 

One-way ANOVA 

F(1,41) p-value Welch's 

statistic 

p-value 

(a
) 

A
g

e 
&

 G
en

er
al

 A
b
il

it
y

 

Age  

(years) 

Mean 

(SD) 

24.08 

(2.45) 

22.90 

(2.93) 
2.08 0.157 - - 

WASI Non-Verbal IQ  

(standardised T-score ) 

Mean 

(SD) 

70.59 

(4.14) 

70.57 

(3.03) 
0.00 0.986 - - 

WASI Verbal IQ  

(standardised T-score) 

Mean 

(SD) 

62.09 

(7.86) 

62.04 

(4.71) 
0.00 0.983  -  -  

Digit Span  

(score out of 16) 

Mean 

(SD) 

13.14 

(2.01) 

10.33 

(1.71) 
24.16 0.000*** - - 

(b
) 

R
ea

d
in

g
 &

 S
p
el

li
n
g

 

WRAT Spelling 

(standardised score) 

Mean 

(SD) 

116.45 

(6.07) 

104.71 

(6.67) 
36.49 0.000*** - - 

WRAT Reading 

(standardised score) 

Mean 

(SD) 

115.59 

(5.34) 

110.81 

(6.44) 
7.05 0.011* - - 

TOWRE Word Reading  

(words read in 45 seconds) 

Mean 

(SD) 

99.73 

(6.27) 

88.14 

(11.15) 
17.84 0.000 17.41 0.000*** 

TOWRE Non-word Reading  

(words read in 45 seconds) 

Mean 

(SD) 

59.55 

(3.10) 

46.76 

(7.62) 
52.88 0.000 51.11 0.000*** 
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Task Controls Dyslexics 

One-way ANOVA 

F(1,41) p-value Welch's 

statistic 

p-value 
(c

) 
P

h
o
n
o
lo

g
ic

al
 

M
ea

su
re

s 

Spoonerisms  

(score out of 30) 

Mean 

(SD) 

28.50 

(1.41) 

26.10 

(2.05) 
20.33 0.000*** - - 

RAN Sparse  

(time in seconds, faster = better) 

Mean 

(SD) 

23.32 

(3.39) 

26.42 

(4.83) 
6.00 0.019* - - 

RAN Dense 

(time in seconds, faster = better) 

Mean 

(SD) 

24.51 

(3.92) 

28.58 

(5.75) 
7.41 0.009** - - 

(d
) 

P
sy

ch
o
ac

o
u
st

ic
 T

h
re

sh
o
ld

 

M
ea

su
re

s 

Dino Rise Time 

(threshold up to 39, lower = better) 

Mean 

(SD) 

7.57 

(6.32) 

6.65 

(6.65) 
0.35 0.558 - - 

Dino Frequency 

(threshold up to 39, lower = better) 

Mean 

(SD) 

8.20 

(6.94) 

9.80 

(6.42) 
0.62 0.436 - - 

Dino Duration 

(threshold up to 39, lower = better) 

Mean 

(SD) 

7.46 

(2.00) 

9.29 

(5.75) 
1.99 0.166 1.92 0.178 

Dino Intensity 

(threshold up to 39, lower = better) 

Mean 

(SD) 

4.95 

(1.63) 

6.21 

(2.05) 
4.99 0.031* - - 

 

*p<.05, **p<.01,***p<.001 
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8.3 AM-BASED SPEECH RHYTHM PERCEPTION & PRODUCTION 

TASKS 

 

8.3.1 MATERIALS 

 

 Four nursery rhyme sentences were used for all three rhythm experiments. These 

were the same sentences that had earlier been used for the tone-vocoding experiment in 

Chapter 3 (see Table 3.1). To recap, all sentences were 8 syllables in length and had an 

alternating 'S-w' rhythm pattern. Two sentences ('Mary Mary' and 'Simple Simon') had a 

trochaic stress pattern such as 'S-w-S-w-S-w-S-w' while the other two sentences ('St Ives' and 

'Queen of Hearts') had an iambic stress pattern such as 'w-S-w-S-w-S-w-S'. In the perception 

and entrainment experiments (Experiments 1 & 2), these sentences were produced by a 

female native British English speaker who was speaking in time to a 4 Hz (syllable rate) 

metronome beat. Therefore the four sentences were perfectly metrically-regular, with 

syllables occurring every 250 ms, and stressed syllables occurring every 500 ms. The 

sentences had a duration of around 2s. In the third production experiment (Experiment 3), 

participants produced these four sentences themselves in time to a metronome beat. 

 

8.3.2 EXPERIMENT 1 : RHYTHM PERCEPTION (TONE VOCODER) TASK  

 

8.3.2.1 Task Description 

 The aim of this task was to investigate AM-based speech rhythm perception in 

dyslexia. Therefore, the four nursery rhyme sentences were tone-vocoded using different AM 

tiers, and participants were asked to identify the sentences on the basis of the rhythm pattern 

that they heard. By systematically presenting specific AM tiers and combinations of AM 

tiers, deficits in rhythm perception could be accurately pinpointed to a problem with a 

specific AM rate or rates.  

 This task was delivered during the tone-vocoding experiment previously reported in 

Chapter 3, where the 1-channel vocoder condition previously reported comprised half of the 

overall session. In the second part of the session, a 29-channel vocoder was also used to 

generate intelligible stimuli (29 ERBN-spaced channels spanning 100 Hz - 7250 Hz), and 
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both sets of stimuli (1-channel and 29-channels) were presented to control
30

 and dyslexic 

participants. Therefore, the design of Experiment 1 followed an AM tier (5) x Phase Shift (3) 

x Demodulation Method (2) x Channels (2) x Group (2) design. As this experiment was 

conducted at the time when the original AMPH model was being developed, the AM tiers 

used for vocoding came from the original AMPH 5-tier AM hierarchy (rather than the new 3-

tier S-AMPH hierarchy). The procedures used for tone-vocoding and phase-shifting were 

described in Chapter 3, Section 3.1.4. For the 29-channel stimuli, these vocoding and phase-

shift procedures were applied to each individual channel, and the channels were equalised to 

70dB before being summed together in the final stimulus. 

 As described in Chapter 2, the five different AM tiers or tier combinations used for 

vocoding were 1) Stress only; 2) Syllable only; 3) Sub-beat only; 4) Stress+Syllable and 5) 

Syllable+Sub-beat. Each of these AM combinations was presented in three phase shift 

conditions : 1) No Shift ; 2) 1π radians-shifted and 3) 2π radians-shifted. Recall that for AM 

tier pairs (e.g. Stress+Syllable and Syllable+Sub-beat), phase-shifting involved shifting the 

slower AM with respect to the faster AM. Fewer phase-shifted stimuli (1π radians or 2π 

radians) were presented than non-phase-shifted versions (0 radians) to allow participants to 

maintain a strong representation of the correct metrical pattern for each nursery rhyme. Thus, 

participants heard the normative (0 radians) version five times for each nursery rhyme, but 

they only heard each of the phase-shifted variants (1π radians or 2π radians) twice.  

 Phase-shifted and normal (0 radians) stimuli were presented within the same 

experimental block in a randomised fashion. Stimuli that were vocoded using MFB-produced 

AMs and PAD-produced AMs were presented in separate experimental blocks. 29-channel 

and 1-channel stimuli were also presented in separate blocks. 29-channel stimuli were always 

presented before 1-channel stimuli as these stimuli were intelligible and 'easier', allowing 

participants to get used to listening to the tone-vocoded stimuli
31

. However, the order of 

presentation for MFB or PAD stimulus blocks was counterbalanced across participants. This 

gave a total of 720 trials divided into 4 blocks over the entire experiment (5 AM tier 

combinations x 9 phase variants [5 x 0π radians, 2 x 1π radians, 2 x 2π radians] x 4 nursery 

                                                 
30

 The 22 control participants included in this experiment were a subset of the 23 participants from the 1-

channel vocoder experiment in Chapter 2. One participant was removed so that the control and dyslexic groups 

would be more closely matched in age. 
31

 In a pilot experiment, the 1-channel stimuli were presented first to some participants (in a counterbalanced 

procedure), but their performance was at chance and participants complained that the task was too difficult and 

were less motivated to complete the experiment. 
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rhymes per block, x 2 demodulation method blocks  x 2 vocoding channel blocks). The task 

set-up was as described in Chapter 3, Section 3.1.3.  

  

8.3.2.2 Results of Rhythm Perception  (Tone Vocoder) Task 

 Participants were scored in two ways. First, an Accuracy score was obtained which 

corresponded to the number of sentences that were correctly identified. Next, a 'Rhythm 

Pattern' (RP) score was computed, which assessed whether participants had correctly 

identified the trochaic or iambic pattern of the sentence. As the Accuracy and RP scores in 

the 1-channel vocoder condition were normally-distributed (Kolmogorov-Smirrnov test, 

p>.05), these were analysed using parametric statistics. However, performance in the 29-

channel condition was near ceiling because these sentences were intelligible. Since the scores 

were not normally distributed for this condition, (Kolmogorov-Smirrnov test, p<.05), non-

parametric statistics were used instead. Recall that the design of the experiment involved 5 

factors. These were AM tier, Phase Shift, Demodulation Method, Channels and Group. 

Therefore, the main analysis involved comparing the first 3 factors (AM tier, Phase Shift and 

Method) across Groups. This analysis was repeated for 1-Channel and 29-Channel conditions 

using parametric and non-parametric statistics respectively. In the following section, the 

results of the 1-Channel condition are presented first, followed by the 29-Channel condition. 

 

a. 1-Channel Vocoder 

 The mean Accuracy and RP scores for each experimental condition and group for the 

1-Channel vocoder condition are shown in Table 8.3. These results were analysed using a 

Repeated Measures ANOVA, taking AM tier (5 tiers), Phase Shift (3 shifts) and Method 

(PAD or MFB) as within-subjects factors, and Group (Control or Dyslexic) as the between-

subjects factor.  

 For Accuracy scores, the results indicated no significant main effect of Group 

(F(1,41) = 1.33, p=.26) and no significant interactions between any factor and Group. There 

were, however, as expected, significant main effects of AM tier (F(4,164) = 6.07, p<.001) 

and Phase (F(2,82) = 19.3, p<.001), and a significant interaction between AM tier and Phase 

(F(8,328) = 4.65, p<.001) with general trends similar to those reported in Chapter 3 (Sections 

3.2.1 and 3.2.2). These trends are not described further here as the focus of this analysis was 

on Group differences. Surprisingly, there was a significant effect of Method (F(1,41) = 9.89, 
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p<.01) which was not present in the analysis with controls only in Chapter 3. Here, 

participants showed higher accuracy for PAD stimuli as compared to MFB stimuli, but there 

was no interaction between Group and Method (F(1, 41) = 1.39, p=.24).  

 For RP scores, there was again no significant main effect of Group (F(1,41) = 1.19, 

p=.28) and no significant interactions between any factor and Group. For the other factors, 

only Phase showed a significant main effect (F(2,82) = 19.84, p<.001), whereas both AM tier 

and Method were not significant. In the critical Group comparisons, dyslexics and controls 

did not differ significantly in any comparison for their performance on 1-Channel vocoded 

stimuli. Therefore statistically, both groups performed equally on all 5 AM tiers, and showed 

an equal phase-shift effect.  

 

b. 29-Channel Vocoder 

 The mean Accuracy and RP scores for each experimental condition and group for the 

29-Channel vocoder condition are shown in Table 8.4. The Accuracy and RP scores from this 

condition were analysed using a non-parametric Mann-Whitney U test. Since it was not 

possible to perform 60 separate tests (which would require a severe Bonferroni correction 

and loss of power), the Accuracy and RP scores were averaged into one composite score, and 

PAD and MFB scores were also averaged (based on the 1-channel finding that controls and 

dyslexics did not show a different pattern of responses across the two demodulation 

methods). This produced 15 new variables - composite scores for 5 AM tiers and 3 Phase 

Shifts. Figure 8.1 plots these new composite scores by group for each AM tier and phase shift 

condition. Accordingly, 15 Mann-Whitney U tests were conducted to test for differences 

between groups, and a Bonferroni-corrected p-value of 0.003 was used for these tests. Out of 

the 15 comparisons, only 2 comparisons produced a p-value of less than 0.05 (p = 0.026 and 

p = 0.028). These two comparisons are marked with a (#) in Figure 8.1, and correspond to the 

Stress+Syllable and Syllable+Subbeat AM combinations in the no-phase-shift condition. 

However, these p-values did not survive the Bonferroni correction, as they were not less than 

0.003. 
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Figure 8.1. Composite scores for each AM tier/tier combination and phase shift condition. 

Each subplot shows a different AM tier/combination, and the x-axis shows the phase shift. 

Controls are shown in blue and dyslexics are shown in red. Errorbars indicate the standard 

error. (#) Indicates a group difference significant at the p<.05 level, but not at the 

Bonferroni-corrected p< .003 level. 
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Table 8.3. Mean Accuracy and RP Scores in the 1-Channel Vocoder Condition 

Method Phase-Shift 

(radians) 

AM Tier Accuracy Scores RP Scores 

Controls Dyslexics Controls Dyslexics 

PAD 

0 π 

Stress 35.2% 30.5% 64.4% 62.7% 

Syllable 35.8% 35.1% 59.9% 58.9% 

Subbeat 31.6% 31.8% 54.8% 53.5% 

Str+Syll 42.2% 33.9% 70.3% 59.5% 

Syll+Sub 33.8% 31.4% 57.9% 54.4% 

1 π 

Stress 22.7% 19.6% 41.5% 42.9% 

Syllable 32.4% 27.9% 58.0% 48.6% 

Subbeat 31.8% 33.4% 58.0% 58.1% 

Str+Syll 18.8% 24.7% 40.9% 44.3% 

Syll+Sub 29.0% 32.3% 59.1% 55.4% 

2 π 

Stress 27.3% 28.6% 49.4% 56.0% 

Syllable 31.3% 28.7% 59.9% 56.8% 

Subbeat 20.5% 31.2% 49.4% 55.3% 

Str+Syll 36.9% 30.9% 59.7% 54.3% 

Syll+Sub 32.4% 31.3% 56.8% 59.2% 

MFB 

0 π 

Stress 27.2% 29.8% 62.7% 59.7% 

Syllable 31.6% 30.9% 62.3% 58.9% 

Subbeat 28.2% 28.6% 56.8% 56.1% 

Str+Syll 38.9% 34.8% 68.6% 65.2% 

Syll+Sub 36.8% 30.0% 63.9% 56.5% 

1 π 

Stress 19.3% 22.6% 47.2% 47.5% 

Syllable 28.4% 25.1% 51.7% 48.7% 

Subbeat 31.8% 19.6% 57.5% 46.6% 

Str+Syll 26.7% 20.8% 50.0% 44.0% 

Syll+Sub 26.1% 29.7% 48.9% 54.6% 

2 π 

Stress 27.6% 18.0% 60.1% 54.5% 

Syllable 25.6% 26.8% 44.9% 46.1% 

Subbeat 24.4% 23.0% 43.2% 52.3% 

Str+Syll 38.6% 30.8% 71.0% 60.7% 

Syll+Sub 27.3% 30.3% 53.4% 54.7% 
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Table 8.4. Mean Accuracy and RP Scores in the 29-Channel Vocoder Condition 

Method Phase-Shift 

(radians) 

AM Tier Accuracy Scores RP Scores 

Controls Dyslexics Controls Dyslexics 

PAD 

0 π 

Stress 54.2% 55.1% 74.2% 72.6% 

Syllable 95.0% 93.0% 96.6% 95.9% 

Subbeat 69.3% 61.1% 80.9% 77.7% 

Str+Syll 96.8% 94.3% 98.6% 97.1% 

Syll+Sub 98.9% 94.5% 99.1% 95.0% 

1 π 

Stress 39.8% 41.9% 61.4% 65.1% 

Syllable 84.7% 76.2% 89.8% 82.1% 

Subbeat 70.5% 63.2% 81.8% 77.0% 

Str+Syll 48.9% 51.8% 62.5% 66.1% 

Syll+Sub 67.0% 56.5% 73.3% 66.1% 

2 π 

Stress 31.3% 33.6% 55.7% 62.3% 

Syllable 85.2% 76.6% 88.1% 82.7% 

Subbeat 59.1% 53.7% 72.2% 67.6% 

Str+Syll 84.1% 74.2% 88.1% 84.4% 

Syll+Sub 76.1% 71.9% 83.5% 81.0% 

MFB 

0 π 

Stress 55.9% 52.2% 70.8% 67.7% 

Syllable 96.4% 94.0% 97.3% 96.0% 

Subbeat 96.6% 95.7% 97.7% 97.1% 

Str+Syll 99.3% 96.2% 99.8% 96.9% 

Syll+Sub 98.6% 97.1% 98.6% 97.1% 

1 π 

Stress 35.8% 36.9% 55.7% 53.0% 

Syllable 88.6% 89.9% 90.9% 94.6% 

Subbeat 98.9% 97.0% 99.4% 97.6% 

Str+Syll 79.0% 69.3% 83.5% 76.4% 

Syll+Sub 89.8% 92.9% 92.6% 94.0% 

2 π 

Stress 21.0% 29.2% 48.4% 56.0% 

Syllable 86.9% 88.7% 89.2% 90.5% 

Subbeat 98.3% 97.6% 98.3% 97.6% 

Str+Syll 86.9% 86.7% 93.8% 92.7% 

Syll+Sub 84.3% 89.2% 87.9% 91.0% 
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 In both the 1-Channel vocoder and 29-Channel vocoder tasks, there were no 

significant differences in performance between controls and dyslexics. One reason could be 

that participants were relatively old and highly compensated dyslexics. However, it is 

interesting to note that even in the 29-channel condition where the sentences were 

intelligible, participants still showed a phase-shift effect for the Stress+Syllable AM 

combination (see bottom left subplot in Figure 8.1). Compared to the no-shift baseline, 

performance dropped for the 1π radians shift and recovered for the 2π radians shift. 

Therefore, even when phonetic information was available, participants' judgments were still 

influenced by the rhythm pattern of the sentence. Participants found it harder to identify the 

sentence when its prosodic pattern was incongruent to what they expected (i.e. 1π radians 

shift), and easier to identify the sentence when its prosodic pattern was congruent with their 

expectations (i.e. 2π radians shift). Moreover, this drop-recovery phase-shift pattern was only 

observed for the Stress+Syllable AM combination, lending further support for the proposal 

that rhythm information is specifically carried by these two key rates of amplitude 

modulation. 

 

c. Correlations Between Speech Rhythm Perception, Reading & Phonology 

 Even though there were no group differences, the theory predicts that relationships 

should exist between phonological awareness and participants' perception of speech rhythm 

patterns. Therefore, individual differences in performance on the 29-channel vocoder task 

were correlated with participants' reading, phonology and psychoacoustic scores. For this 

analysis, 29-channel vocoder composite scores were used, for the no-phase-shift condition, 

since some of these scores had showed differences between groups (prior to the Bonferroni 

correction). Table 8.5 shows the resulting correlations, where significant correlations are 

marked in blue. The only significant correlation with reading was for the Stress+Syllable AM 

tier combination, which was one of the two AM conditions with group differences under a 

significance value of p=.05. Here, TOWRE non-word reading was significantly correlated 

with performance for Stress+Syllable AM tiers (r = 0.30,  p<.05).  

 For the phonological measures, two AM tiers showed significant correlations. 

Performance on the Syllable AM tier was significantly negatively correlated with RAN 

Sparse times, where better vocoder performance was related to faster picture naming (r = -

0.33, p<.05). Performance on the Stress+Syllable AM tier combination was significantly 

negatively correlated to both RAN Sparse and RAN Dense times (r = -0.35, p<.05 for both), 
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where better vocoder performance was also related to faster picture naming. If Stress and 

Syllable AMs together carry prosodic stress patterns in speech, it is not surprising that 

relationships to reading and phonology are strongest for this AM combination, since prosodic 

stress perception is related to reading and phonology (Whalley & Hansen, 2006; Leong et al, 

2011; Goswami et al, 2010).  

 

Table 8.5. Correlations between Composite scores for each AM tier (no phase shift 

condition), and performance in reading, phonology and psychoacoustic measures. 

Correlations are reported over the full group of participants, df = 41. 

 
Task 

AM Tier (no phase shift) 

Str Syl Sub Str+Syl Syl+Sub 

R
ea

d
in

g
 &

 

S
p

el
li

n
g
 

WRAT Spelling 0.07 0.08 0.16 0.16 0.07 

WRAT Reading -0.02 0.09 -0.01 0.03 0.08 

TOWRE Word Reading 0.25 0.26 0.22 0.13 0.12 

TOWRE Nonword 

Reading 

0.22 0.20 0.15 *0.30 0.23 

P
h

o
n

o
lo

g
y
 Spoonerisms -0.01 0.12 0.02 0.09 0.20 

RAN Sparse -0.20 *-0.33 0.01 *-0.35 -0.18 

RAN Dense -0.28 -0.22 -0.03 *-0.35 -0.20 

P
sy

ch
o
a
co

u
st

ic
 Dine Rise Time -0.08 0.09 0.12 0.02 0.09 

Dino Frequency *-0.38 -0.28 -0.24 -0.12 0.04 

Dino Duration -0.22 **-0.49 *-0.32 *-0.31 **-0.51 

Dino Intensity -0.04 *-0.35 0.01 -0.27 **-0.45 

*p<.05, **p<.01, ***p<.001 

 

 For the psychoacoustic measures, the strongest correlations existed for duration 

discrimination, where duration thresholds were significantly related to performance on 

Syllable, Subbeat, Stress+Syllable and Syllable+Subbeat AM tier combinations. These 

correlations were negative because lower psychoacoustic thresholds indicate better 

discrimination. Only performance for the single Stress tier was unrelated to duration 

thresholds, but was instead significantly negatively related to Frequency thresholds (r = -

0.38, p<.05). Two of the AM conditions were related to Intensity discrimination (Syllable 

and Syllable+Subbeat), but none were related to Rise Time discrimination. Therefore, 
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individual differences in perception of speech AMs at most rates appeared to be primarily 

related to duration discrimination. Bearing in mind that the speech stimuli in the 29-channel 

vocoder condition were intelligible (not pulse patterns), this suggests that changes in acoustic 

duration may be important both for speech rhythm perception, as well as for general speech 

intelligibility. 

 

8.3.3 EXPERIMENT 2 : RHYTHM ENTRAINMENT TASK  

 

8.3.3.1 Task Description 

 In this task, participants heard the original nursery rhyme sentence (not tone-vocoded) 

and were asked to tap along to the rhythm of each nursery rhyme sentence. Each sentence 

was repeated three times, with a silent gap between repetitions that was equal to the length of 

that sentence. Silence was inserted between sentence presentations so that participants would 

have to actively find the beat every time the sentence was presented, rather than relying on 

remembering the beat if the presentations had been continuous. Therefore, their beat-finding 

cognitive processes would be actively engaged throughout the entire experimental trial. 

Figure 8.2 shows an example of the three repetitions of the sentence "Mary Mary quite 

contrary" as presented to participants. Here, the length of the original sentence was 2.01s, 

and this was the length of silence inserted between repetitions of the sentence.  

 

Figure 8.2. Example of a single trial for the sentence 'Mary Mary'. 

 

 Participants were instructed to begin tapping as soon as they heard the sentence begin. 

They could continue tapping through the silent periods, but were told to aim to come back in 

on time with the next presentation of the sentence. Therefore, the emphasis of the task was on 

timing their taps correctly to the beat of each sentence, every time they heard it, with a 
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'maintenance period' in-between sentence presentations. No instructions were given as to the 

rate of tapping, but all participants spontaneously tapped according to the stress rate of the 

sentence (i.e. 2 Hz), rather than trying to tap on every syllable. As it was expected that 

participants would take some time to entrain to the rhythm of the sentence, only taps from the 

second and third presentations of the sentence were used for analysis, and taps from the first 

presentation were discarded. The 2 trochaic sentences were presented first before the 2 

iambic sentences, as the trochaic sentences were easier to track rhythmically. However, the 

order of presentation within the pairs of trochaic and iambic sentences (i.e. 'Mary Mary' first 

or 'Simple Simon' first) was counterbalanced across participants. Circular tests and analyses 

were conducted using the Matlab Toolbox for Circular Statistics (Berens, 2009). 

 It is important to note that the sentences used here did not contain an audible 

metronome beat, but were recordings of rhythmic speech produced to a metronome beat - 

that is, speech with a clear beat. Therefore, this experiment tested entrainment to the acoustic 

carriers of rhythmic beats in speech (e.g. AM patterns), corresponding to the 'p-centres' in 

speech. Rhythmic entrainment to a pure metronome beat (not speech) has previously been 

tested in dyslexia. In these studies, adult dyslexic individuals showed greater anticipation for 

the beat (Wolff, 2002) and greater inter-tap variability (Thomson et al, 2006). However, to 

the author's knowledge, this is the first study investigating motor entrainment to speech 

rhythm in dyslexia. Therefore, the results of this experiment have direct implications for 

dyslexics' perception of p-centres, rhythm and prosody in speech.  

 

8.3.3.2 Results of Rhythm Entrainment Task 

 The results of this task were analysed using conventional measures (e.g. tapping 

intervals) as well as using the 5 x 3 AM hierarchy representation from the S-AMPH model. 

 

a. Tapping  Intervals & Tapping to Vowel Onsets 

 For this task, participants tapped along to the beat of metrically-regular nursery rhyme 

sentences. Since the stress rate of the target sentence was 2 Hz (4 Hz syllable rate, stress on 

alternate syllables), it was expected that participants would tap at this stress rate, generating 

tapping intervals of ~500 ms. The results were as predicted. On average over the four nursery 

rhyme sentences, controls had a mean tapping interval of 520 ms (SD = ±38ms) while 

dyslexics had a mean tapping interval of 512 ms (SD = ±16 ms). In an independent samples t-
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test, there was no significant difference between controls and dyslexics in terms of their mean 

interval of tapping (t=.93, p=.36). Therefore, both control and dyslexic participants generated 

taps at appropriate intervals. Surprisingly, the dyslexics were less variable than controls in 

their tapping intervals (SDs of 16 ms vs 38 ms). This result suggested that both control and 

dyslexic participants were successfully entraining to the stress rate of the sentences. 

However, the tapping interval only indicates the average rate of tapping, and not whether 

controls and dyslexics were actually early or late with respect to the stress beat (i.e. p-

centres) in the acoustic signal.  

 To investigate this, participants' taps were analysed in terms of their distance from 

linguistic p-centre markers. Since p-centres are thought to be located near
32

 the onsets of 

vowels in stressed syllables (Allen, 1972), the vowel onsets of the stressed syllables in each 

sentence were identified, and participants' tap distance from each respective vowel onset was 

measured. Recall that there were four stressed syllables, and therefore four taps were made 

per sentence. In this analysis, the first two more variable taps for each sentence were 

discarded to ensure that the taps used for analysis reflected a stable 'entrained' state. 

Therefore, for each nursery rhyme sentence, four taps were taken for each participant - the 

last two taps from the last two repetitions of that sentence. The scatterplot of tapping 

distances from the vowel onset (averaged over the four taps) for each participant and nursery 

rhyme is shown in Figure 8.3.  

 From visual inspection of Figure 8.3, it is clear that participants' tapping was near to 

the vowel onsets (within 50 ms) for the two trochaic sentences ('Mary Mary', 'Simple 

Simon'), but much more distant and variable for the two iambic sentences ('Queen of Hearts', 

'St Ives'). Indeed, some of the taps for the iambic sentences were so far distant from the 

current vowel onset (e.g. over 500ms) that they overalapped with the next vowel onset. It is 

possible therefore, that some of these iambic taps could have been responses made to the 

following vowel onset rather than the current one. In the initial screening process, only the 

first 4 taps made within the period of each sentence were taken, which helped to minimise 

this possibility. However, due to the continuous and circular nature of the data, it is difficult 

to distinguish between a very late response to the current vowel onset, and a very early 

anticipatory response to the next vowel onset. Consequently, the iambic data can be 

                                                 
32

 Note however that the exact location of the p-centre with respect to the vowel onset is influenced by the 

length of the initial consonant cluster of the syllable, and the length of the syllable coda. Since it was not 

possible to determine the exact p-centre for each different stressed syllable in the four nursery rhyme sentences, 

the vowel onset was used as a proxy marker of beat (p-centre) location for all the stressed syllables. 
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interpreted in two ways. First, participants could have been around 200 ms ('Queen of 

Hearts') and 380 ms ('St Ives') late with respect to the current vowel onset. Alternatively, the 

taps could have actually been anticipatory responses to the next vowel onset. In this case, 

participants would have been around 300 ms and 120 ms early for 'Queen of Hearts' and 'St 

Ives' respectively (assuming that the next vowel onset was exactly 500ms away). In reality, 

the measured iambic responses probably comprised a mixture of these two types of responses 

(delayed reactions and anticipations).  

 

Figure 8.3. Individual scatterplot (left) and group means (right) of the timing of taps (in ms) 

with respect to the stressed vowel onset. Controls are shown in blue and dyslexics in red. 

Errorbars show the standard deviation of the tap timings. 

 

 

 Since it was expected that dyslexics should be poorer than controls in detecting and 

tapping along to the beat of a sentence, group differences in tapping were examined. A 

repeated measures ANOVA was conducted taking nursery rhyme as the within-subjects 

factor and group as the between-subjects factor. As expected, there was a large main effect of 

nursery rhyme (F(3,123) = 60.8, p<.0001), with participants tapping closer to the vowel 

onsets for trochaic than for iambic rhymes. However, there was no main effect of group, and 

no significant interaction between rhyme and group. This result appeared to indicate that 

dyslexics were just as good as controls in entraining to vowel onsets in trochaic sentences, 

but equivalently, they were just as poor at entraining to vowel onsets in iambic sentences. 

trochaic iambic trochaic iambic 

   Mary Simon Queen Ives     Mary Simon Queen Ives 

o  Controls 

o  Dyslexics 
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Therefore, contrary to prediction, the traditional analyses of tapping behaviour (tapping 

intervals and tapping distance from p-centre markers) appeared to indicate that there were no 

differences between controls and dyslexics in rhythmic entrainment to metrical speech.  

 

b. Tapping with Respect to AM Phase 

 However, these traditional analyses only measured tapping behaviour according to 

one major rhythmic timescale (or tactus) in the speech stimulus - the stress beat rate. It is 

possible that listeners can entrain to more than one rhythmic timescale at the same time, since 

taps can also be produced at a faster syllable rate. Therefore, tapping behaviour should be 

measured according to all possible tactus levels in the speech stimulus. To do this, 

participants' taps were evaluated at Stress, Syllable and Phoneme tactus levels, using the 

phase of each AM tier as the dependent measure. The phase of each AM was used as the 

measure because phase values vary within a limited and well-defined range (-π radians to π 

radians), unlike raw amplitude values. Therefore, for each tap, the concurrent phase of the 

Stress AM, Syllable AM and Phoneme AM at the point of the tap was recorded for each of 

the five spectral bands in the speech stimulus (Figure 8.4 illustrates this process for one 

spectral band).  

 

Figure 8.4. Example of possible tap sequence for the sentence "Mary Mary quite contrary". 

Hand icons represent the occurrence of the 4 taps. Tap timings are analysed according to the 

phase at the point of occurrence (yellow dot) for each AM tier. 

 

Stress   

Syllable   

Phoneme 

 "MA     -ry       MA       -ry      QUITE     con    -TRA     -RY" 
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 The circular mean phase was then taken across the five spectral bands for each AM 

tier. As before, only the final two taps for the last two sentence repetitions were included in 

the final analysis. The average of these four phase values was taken for each nursery rhyme 

sentence, and a grand average across the four nursery rhyme sentences
33

 was obtained for 

each participant and AM tier. The grand average phase values for each AM tier are shown in 

Figure 8.5, broken down by participant group. 

 

Figure 8.5. Grand mean tapping phase for each group and AM tier. Controls are shown in 

blue and dyslexics in red. Coloured dots show the group means and errorbars indicate the 

group circular standard error of the mean. 

 

 

 First, the phase dispersion of the two groups was checked to ensure that there was a 

sufficient concentration in phase values within each group to validate a test of group 

differences. This phase dispersion was expressed as a vector length between 0 and 1, and the 

minimum acceptable length for a valid test was 0.45. The mean vector lengths were large for 

Stress and Syllable tiers (0.56 and 0.66 respectively, averaged across both groups), but not 

for the Phoneme tier (0.19). Therefore, participants' taps were well concentrated around a 

particular phase value for Stress and Syllable tiers, but were randomly distributed with 

respect to Phoneme phase. This suggests that participants were entraining their taps to Stress 

                                                 
33

 A grand average across the 4 nursery rhymes was taken in order to reduce variability and increase the phase 

concentration for each AM tier. If the nursery rhymes were analysed separately, not all would produce 

sufficiently concentrated phase vectors. This would result in valid tests for some rhymes but not for others, 

leading to difficulties in interpretation. 

* 
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and Syllable phase, but not to Phoneme phase. Group differences were then analysed using a 

circular Watson-Williams test for equal means (the circular equivalent of an ANOVA test). 

The results of the Watson-Williams test
34

 showed a significant difference between groups for 

Syllable phase (p <.05), but not for Stress phase (p=.84) (see Figure 8.5). Since phase values 

were well concentrated for the Syllable tier, the group difference observed here is valid. 

 Integrating the results from the previous conventional analyses on tapping intervals 

and timing together with the current findings on tapping phase, these findings suggest that 

dyslexics are able to entrain reliably to the beat in a speech signal, producing taps at an 

appropriate interval. However, dyslexics entrain to a different 'temporal anchor point' or p-

centre for syllables in the speech signal, entraining their taps to an earlier phase of the 

Syllable AM than controls.  

 This difference in syllable beat detection for dyslexics could mean that they have an 

altered perception of syllable and stress patterns in speech, which could lead to altered 

phonological representations of these patterns. To investigate this, a circular-linear 

correlation analysis was conducted to see if individual differences in phase of tapping were 

related to performance in reading, phonology and psychoacoustic discrimination. Table 8.6 

shows these correlations for participants' mean Stress, Syllable and Phoneme phase of 

tapping, where significant correlations are marked in blue.  

 Performance in reading and spelling were strongly correlated to participant's Syllable 

phase of tapping. There were significant correlations between Syllable tapping phase and 

WRAT Spelling (r = 0.49, p<.01), as well as both TOWRE reading measures (r = 0.40/0.42, 

p<.05). In addition, there was also a significant correlation between Stress phase of tapping 

and WRAT Spelling (r = 0.41, p<.05). For phonology, the only significant correlation was 

between Syllable phase of tapping and Spoonerisms (r = 0.50, p<.01), and there were no 

significant correlations with psychoacoustic thresholds. It is striking that the vast majority of 

correlations with reading and phonology occurred for Syllable tapping phase (where there 

was a significant difference between controls and dyslexics). In contrast, there were no 

significant correlations with Phoneme tapping phase (which had not shown consistency 

across individuals).  

                                                 
34

 A non-parametric circular test for equal medians (equivalent to the Kruskal-Wallis test) also showed similar 

results, with an even larger significance value for the group difference in Syllable phase (p = .009). 
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 Therefore, the Syllable phase 'anchor point' used by participants to entrain their 

tapping was indeed related to reading and phonology, where a later entrained tapping phase 

was associated with better reading scores. If the Syllable tapping phase is related to the p-

centre locations perceived by listeners, then these findings may indicate that dyslexics 

perceive different (earlier) p-centre loci in speech, as compared to controls. The correlation 

results further suggest that such syllable timing differences have implications for reading and 

phonology, even in well-compensated adult dyslexics.  

 

Table 8.6. Correlations between participant's Stress, Syllable and Phoneme phase of tapping 

with performance in reading, phonology and psychoacoustic measures. Correlations are 

reported over the full group of participants, df = 41. 

 
Task 

Modulator Tier (tapping phase)  

Stress  Syllable  Phoneme 

R
ea

d
in

g
 &

 

S
p

el
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n
g
 

WRAT Spelling *0.41 **0.49 0.07 

WRAT Reading 0.19 0.34 0.25 

TOWRE Word Reading 0.20 *0.40  0.08 

TOWRE Nonword Reading 0.15 *0.42 

 

0.27 

P
h

o
n

o
lo

g
y
 Spoonerisms 0.28 **0.50 0.11 

RAN Sparse 0.27 0.35 0.18 

RAN Dense 0.19 0.36 0.35 

P
sy

ch
o
a
co

u
st

ic
 Dine Rise Time 0.26 0.26 0.14 

Dino Frequency 0.11 0.18 0.09 

Dino Duration 0.34 0.14 0.22 

Dino Intensity 0.05 0.36 0.34 

*p<.05, **p<.01 

 

  



233 

 

8.3.4 EXPERIMENT 3 : RHYTHM PRODUCTION TASK 

 

8.3.4.1 Task Description 

 

 In this final task, participants were asked to speak aloud each of the four nursery 

rhyme sentences in time to a 2 Hz metronome beat, repeating each sentence five times before 

moving on to the next sentence. For each of the four nursery rhyme sentences, only the last 

three (out of five) repetitions were used in the analysis. The metronome beat was presented 

binaurally via headphones, at a sound level that was comfortable for participants. Participants 

were allowed to practice producing the sentences in time to the beat beforehand, and the 

recording commenced only after they indicated that they were satisfied that they could 

produce the sentences successfully. Participants produced the trochaic sentences first ('Mary 

Mary' and 'Simple Simon') followed by the iambic sentences ('Queen of Hearts', 'St Ives').  

 Although this task is described last for the purposes of the flow of the discussion, in 

the actual study, this rhythm task was always completed first out of the 3 so that the 

utterances produced by participants would be spontaneous and not affected by the examples 

that they subsequently heard in the perception and entrainment tasks. To preserve this 

spontaneity, no explicit instructions were provided to participants as to how many syllables 

they were supposed to fit into each metronome beat.  

 

8.3.4.2 Results of Rhythm Production Task 

 

 For this task, participants were required to repeat the four nursery rhyme sentences in 

time to a 2 Hz metronome beat. The vast majority of participants spontaneously produced 

two syllables per beat instead of one syllable per beat, although they were not explicitly 

instructed to do so. Figure 8.6 shows an example of an utterance produced by a dyslexic 

participant, where the sentence of 8 syllables was uttered to fit within 4 metronome beats. 

This suggested that participants preferred to impose a regular stress rate on their utterances 

rather than a regular syllable rate, timing every alternate stressed syllable to the beat instead 

of every syllable. This behaviour is consistent with the proposal that English is a stress-timed 

language (Abercrombie, 1967; Pike, 1945). However, it is also possible that participants 
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chose this faster 4 Hz syllable rate of speaking (as compared to a 2 Hz syllable rate) because 

it was closer to their spontaneous speaking rate. 

 

Figure 8.6. Example of the nursery rhyme sentence "Mary Mary quite contrary" produced by 

a dyslexic participant, uttered three times. The vertical tick marks in the top part of the figure 

indicate the pacing metronome beats. The bottom part of the figure shows the waveform of 

the utterance. Each iteration of the sentence (8 syllables) was spoken to fit within 4 

metronome beats( red box). 

 

 

 A small number of 2 controls and 2 dyslexics did spontaneously choose to produce 1 

syllable per beat instead of 2 syllables per beat, using this slower rate of production across all 

four sentences. A further 3 controls also used this slower rate of production for either one or 

two out of the four sentences. All of these more-slowly-produced 'syllable-timed' utterances 

were excluded from the analysis. It is also worth noting that equal numbers of controls and 

dyslexics consistently produced these 'syllable-timed' variants across the 4 sentences 

(although more controls produced this sporadically). Therefore, the rate or timing preference 

of participants was not a factor that differed significantly between groups in this experiment. 

 Each of the four nursery rhyme sentences was analysed separately, resulting in 

between 17-20 controls and 19 dyslexics per nursery rhyme sentence after the 'syllable-timed' 

utterances were removed. Recall that each nursery rhyme sentence was repeated 5 times, but 

only the last 3 repetitions were included in the analysis. For each sample, the timings of the 

onsets of the 8 syllable vowel nuclei were manually determined. From these vowel onset 

timings, vowel onset-to-vowel onset intervals were computed by subtracting the time of the 

current vowel onset from the time of the next vowel onset, resulting in 7 vowel-to-vowel 

intervals. These 7 vowel-to-vowel intervals were then averaged (across the 7 intervals and 3 
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sentence repetitions) to produce a mean vowel-to-vowel interval for each participant and 

nursery rhyme sentence. The resulting vowel-to-vowel interval was analogous to the inter-tap 

interval computed for the Tapping data in Experiment 2. 

 The time difference between vowel onsets and metronome beats was not used as a 

measure because in some case (e.g. for iambic rhymes discussed in the next section), the pace 

of participants' utterances was quite far off from the metronome beat, leading to ambiguities 

in identifying which vowel onset corresponded to which metronome beat. Also, if 

participants were producing syllables with regular intervals, but at a different rate from the 

metronome beat, the time difference between the vowel onsets and the metronome beat 

would increase more and more as the utterance progressed. If these differences were 

measured, the result would lead one to believe that the utterance was not rhythmically-regular 

when in fact the utterance was regular, but at a different rate from the metronome. Therefore 

in this analysis, syllable vowel rate is measured (i.e. vowel-to-vowel interval) instead of the 

absolute vowel-metronome time difference. 

 

a. Vowel-to-Vowel Interval 

 The vowel-to-vowel interval is a proxy indicator of syllable length and therefore 

syllable rate. Since the beat interval of the metronome was 500 ms (2 Hz), and participants 

uttered 2 syllables per beat (4 Hz), the ideal vowel-to-vowel interval should have been 250 

ms. As shown in Figure 8.7, both control and dyslexic participants were close to this ideal 

syllable length for the trochaic rhyme 'Mary Mary'. However, for the iambic rhymes 'Queen 

of Hearts' and 'St Ives', syllable lengths grew shorter for both groups. The dyslexics, in 

particular, shortened their syllable lengths for 'St Ives' drastically to under 210 ms. To 

analyse these results, a repeated measures ANOVA was conducted with Nursery Rhyme as 

the within-subjects factor, and Group as the between-subjects factor. There was a significant 

main effect of Nursery Rhyme (F(3,102) = 39.2, p<.0001) with vowel intervals getting 

shorter from 'Mary Mary' to 'Simple Simon' to 'Queen of Hearts' to 'St Ives', but there was no 

main effect of Group (F(1,34)=2.62, p=.15). However, there was a large significant 

interaction between Nursery Rhyme and Group (F(3,102) = 7.84, p<.0001) indicating that 

groups differed in their pattern of performance across the 4 nursery rhymes. To investigate 

this interaction further, a Tukey HSD post hoc test was conducted. Results of the post-hoc 

test revealed significant differences between groups only for the iambic nursery rhyme 'St 

Ives' (p <.001). This difference is marked on the graph in Figure 8.7.   
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Figure 8.7. Mean vowel-to-vowel interval (in ms) for each nursery rhyme and group. The 

ideal target interval was 250 ms, this is marked on the graph with a dotted line. Controls are 

shown in blue and dyslexics in red. Errorbars indicate standard error. 

 

 The nursery rhyme 'St Ives' was metrically more complex than the other three nursery 

rhymes because many participants were unsure of how to assign stress on the first three 

syllables "As I was...". According to the original nursery rhyme, these should have been 

spoken with a 'w-S-w' pattern. However, a significant number of participants in both control 

and dyslexic groups were unfamiliar with the original rhyme, and chose to produce a 'S-w-w' 

pattern instead for these first three syllables (e.g. "AS i was..."). Despite this difficulty in 

metrical patterning, controls still produced the syllables in 'St Ives' with an interval that was 

close (~20 ms) to the target interval of 250 ms (i.e. an error of 8.5%). However, dyslexics 

appeared to 'lose track' of the metronome beat for 'St Ives', producing syllables that were 

more than 40 ms shorter than the target interval (i.e. an error of 17.2%). This trend of 

dyslexics producing syllables that were too short was also present for the nursery rhyme 'The 

Queen of Hearts', but the group difference here did not reach statistical significance.  

 It is interesting to note that for both control and dyslexic groups, there was an overall 

decrease in vowel-to-vowel interval from trochaic and iambic rhymes (i.e. the significant 

main effect of Nursery Rhyme). It is possible that this overall increase in speaking rate 

reflected a change in strategy by participants. For example, for the simpler trochaic rhymes, 
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participants could have been trying to entrain every stressed syllable to the external beat (i.e. 

every two syllables). As the metrical complexity of the rhymes increased, taking up more 

mental resources, participants could have switched to a simpler strategy of only aiming to 

produce every four syllables in time to the beat. For example, for the rhyme 'St Ives', many 

participants incorrectly attempted to impose a Strong starting syllable on the sentence, 

producing the pattern "AS i was going TO st ives" (stressed syllables in CAPS). This incorrect 

pattern contained only two stressed syllables instead of four. In this case, participants could 

have been focused on synchronising just these two stressed syllables to the beat, while 

disregarding the timing of the intervening unstressed syllables. These unstressed syllables 

would then naturally contract to a shorter un-paced length, producing the overall decrease in 

vowel-to-vowel interval observed in these results.  

 However, while both groups showed a decrease in vowel-to-vowel interval across the 

4 rhymes, the specific pattern of performance across the rhymes differed between the groups 

(i.e. the Rhyme x Group interaction). While dyslexics performed more poorly on the iambic 

rhymes, they performed as well (or possibly even better) for the trochaic rhymes. For 

example, for the sentence 'Mary Mary', the dyslexic group was even closer to the 250 ms 

target than the control group (although the difference of ~3 ms was not statistically 

significant). Hence the deficit for adult dyslexics was not a simple case of being unable to 

entrain to a beat per se. Rather, dyslexics appeared to struggle specifically with producing 

iambic-patterned rhymes that had a more complex metrical structure (or were metrically 

ambiguous), showing poorer control over syllable timing in this situation. As the participants 

in this study were highly-compensated adult dyslexics, it is possible that younger children 

could show a stronger production deficit, even with simple trochaic patterns. 

 Problems with speech rhythm production could indicate that there are problems with 

motor co-ordination (e.g. between the speech articulators) in dyslexic adults. Unfortunately, 

in this study there were no other measures of motor co-ordination to test this hypothesis. 

However, problems with producing rhythmic speech could also arise from a poor 

phonological representation of the rhythmic p-centres of syllables, making it difficult to 

synchronise the production of these syllables to an external beat. In this case, one's success in 

rhythmic speech production would be related to the quality of one's phonological 

representations. To test this, individual differences in vowel-to-vowel intervals were 

correlated with participants' reading, phonological and psychoacoustic scores. The results of 
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the correlation are shown in Table 8.7. Significant correlations are highlighted in blue and 

bold.  

Table 8.7. Correlations between spoken vowel-to-vowel onset intervals, and performance in 

reading, phonology and psychoacoustic measures. Correlations are reported over the full 

group of participants, df = 34. 

 
Task 

Nursery Rhyme Sentence 

Mary Simon Queen  Ives 

R
ea

d
in

g
 &

 

S
p

el
li

n
g
 

WRAT Spelling -0.23 0.01 0.25 0.15 

WRAT Reading -0.14 -0.01 0.26 0.12 

TOWRE Word Reading -0.25 -0.07 0.28 *0.37 

TOWRE Nonword Reading -0.22 -0.05 0.24 *0.36 

P
h

o
n

o
lo

g
y
 Spoonerisms -0.10 0.10 0.29 **0.51 

RAN Sparse 0.23 0.22 0.09 -0.04 

RAN Dense 0.09 0.06 -0.07 -0.13 

P
sy

ch
o
a
co

u
st

ic
 Dino Rise Time -0.18 -0.31 -0.16 -0.04 

Dino Frequency *-0.39 **-0.44 ***-0.59 *-0.33 

Dino Duration 0.02 0.00 -0.31 -0.13 

Dino Intensity -0.09 -0.04 -0.19 -0.17 

*p<.05, **p<.01, ***p<.001 

 Individual differences in vowel-to-vowel timing for the nursery rhyme 'St Ives' were 

significantly correlated to speeded TOWRE word and non-word reading, as well as to 

Spoonerisms scores. Therefore, performance in rhythmic speech production was indeed 

related to the quality of phonological representations (i.e. Spoonerisms task), and therefore to 

reading. As 'St Ives' was the only nursery rhyme where controls and dyslexics differed 

significantly in vowel interval, it was not surprising that performance on the other rhymes 

was uncorrelated to reading and phonology. Also, speaking performance for 'St Ives' was 

significantly correlated to timed measures of reading (TOWRE), but not to untimed measures 

(WRAT). In the TOWRE, participants read aloud as many words as they could within a time 

limit of 45s. Typically, participants read at a constant rhythmic rate, and their reading fluency 

at this rhythmic rate determined their final score. In the experimental rhythmic speaking task, 

dyslexics were less successful than non-dyslexics in controlling their syllable timing for the 

nursery rhyme 'St Ives'. This inaccuracy in syllable timing could possibly also underlie 
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dyslexics' lower reading fluency in the TOWRE tasks, explaining the significant correlation 

between these tasks.   

 Finally, across all four nursery rhymes, there was a strong correlation between 

rhythmic speaking performance, and participants' psychoacoustic thresholds for frequency 

discrimination. No other acoustic dimension was related to rhythmic speaking performance 

(as measured by vowel-to-vowel intervals). This finding is surprising since the vowel interval 

is a temporal measure, and one would expect a relationship to timing-related dimensions such 

as duration or rise time. Nonetheless, the results were unequivocal in indicating a strong 

relationship to pitch (frequency) discrimination rather than to temporal discrimination.  

Moreover, this relationship was seen for all 4 nursery rhymes, not just the nursery rhyme that 

had shown a group difference ('St Ives'), indicating that the pitch relationship was 

fundamental to the task itself, irrespective of the stimulus.  

 Why would participants' ability to discriminate pitch be related to how well they can 

speak in time to a beat? A possible explanation is that these factors are linked by musical 

ability or experience. That is, speaking in time here could have involved similar cognitive 

mechanisms as singing or playing an instrument in time - with the difference that musical 

performance also involves a control of pitch, not just rhythm. According to this view, 

participants who were more experienced with pitch and rhythm control in music should also 

perform better on this speaking task. To test this hypothesis, speaking performance was 

correlated with participants' music experience, as well as with their pitch discrimination 

ability. For this analysis, participants were assigned scores depending on their number of 

years of music experience. Participants who had no music experience were given a score of 

1, participants with up to 5 years of music experience were given a score of 2, and 

participants with more than 5 years of music experience were given a score of 3. As 

predicted, there was a significant relationship (p<.05) between music experience and 

speaking performance for 3 out of the 4 rhymes ('Simple Simon', r = 0.37; 'Queen of Hearts', 

r = 0.37; and 'St Ives', r = 0.39). There was also a strong negative relationship between Dino 

Frequency scores and music experience (r = -0.50, p<.01), indicating that participants with 

more music experience had lower (better) discrimination thresholds for pitch. Therefore, the 

pitch correlation with rhythmic speaking performance could have been mediated by music 

experience. Fortunately, control and dyslexic groups did not differ on music experience, 

therefore the group differences observed in this task should not have been due to different 

exposure to music. 
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b. S-AMPH Envelope-Based AM Measures 

 

 In the previous traditional analysis of vowel-to-vowel onsets, an important difference 

was revealed between controls and dyslexics in terms of their syllable timing for complex 

iambic metrical patterns. However, it would also be interesting to analyse the rhythmic 

regularity of participants' utterances, as well as the specific Strong-weak prosodic patterns  

that they produced. This could reveal disorders in timing on different speech levels, and 

disorders in prosodic patterning. It would also be interesting to analyse the overall 

modulation statistics present in the envelope of dyslexic and non-dyslexic utterances, which 

could reveal more long-term, stochastic differences in prosodic organisation. To do this, 

envelope-based AM measures from the S-AMPH model were applied to the speaking data.  

 Recall that the final data used for analysis comprised 3 repetitions per nursery rhyme 

sentence per participant, and slower 'syllable-timed' utterances were excluded. For the AM 

analysis, 5 x 3 AM hierarchies were derived from the amplitude envelopes of all the speech 

samples. Three AM-based indices were then computed. First, the autocorrelation function 

and periodic power for each modulation tier (Stress, Syllable and Phoneme) was computed. 

Second, the prosodic strength index (PSI) or stress pattern for each sample was computed. 

Finally, the hierarchical phase relationship between modulation tiers in the AM hierarchy 

was computed. 

 

(1) Periodic Power 

 For each of the 3 S-AMPH modulator tiers (Stress, Syllable, Phoneme), the 

autocorrelation function (ACF) of that tier was computed. Since the autocorrelation function 

computes the correlation of the signal with itself at different time lags, it is a measure of 

periodicity within the signal, and can be used to detect patterns that repeat over time. In the 

context of speech AMs, the regular stress and syllable patterns of the nursery rhyme 

sentences should have created regularly repeating modulation patterns at specific time 

intervals (e.g. syllables every 250 ms). These repeating modulation patterns should be visible 

as peaks in the ACF at corresponding time lags (e.g. syllable-related peaks in the ACF at +/-

250 ms, and integer multiples of this value). If participants produced these stress and syllable 

patterns very regularly (i.e. isochronously), then the ACF peaks would be large. Conversely, 

if participants were more variable in their timing of stress and syllable production, the 

corresponding ACF peaks would be smaller. Therefore, the ACF indicates both the 
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prominent rates of periodic regularity within the utterance, as well as the strength of this 

regularity. 

  The ACF for each modulation tier and nursery rhyme sentence, averaged over the 5 

spectral bands, is shown in Figure 8.8. From visual inspection of Figure 8.8, ACF peaks for 

the Syllable modulator (green) did indeed occur at +/-250 ms, 500 ms, etc, indicating that 

controls and dyslexics were indeed producing syllables at a regular rate of ~4 Hz. Similarly, 

the Stress modulator (red) for all four nursery rhymes showed a small peak in the ACF at 

~500 ms (2 Hz) corresponding to the metronome beat, as well as later peaks corresponding to 

multiples of this metronome rate. For the nursery rhyme 'Mary Mary' (top left subplot), there 

were also particularly strong peaks in the Stress ACF at +/- 1000 ms and +/- 1500 ms, 

indicating additional stress patterns occurring every 4 syllables and 6 syllables respectively. 

These additional stress accents could correspond to patterns such as "MA-ry ma-ry  QUITE 

con-tra-ry" or "ma-ry ma-ry  quite con-TRA-ry" that were produced by different participants. 

 

Figure 8.8. Control and dyslexic mean ACFs for each nursery rhyme and modulation tier. 

ACFs are averaged over the 5 Spectral bands. The Stress modulator is shown in red, the 

Syllable modulator in green and the Phoneme modulator in cyan blue. Controls are plotted 

in a dotted line and dyslexics in a solid line.  
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 To more accurately quantify the amount of periodic regularity in these rhythmic 

patterns, the Fourier transform of the ACFs was taken. The Fourier transform computes the 

periodic 'power' at each time lag, for all the possible time lags or modulation rates, effectively 

computing the power spectral density of the modulator
35

. Figure 8.9 shows the computed 

periodic power of each modulator for each nursery rhyme sentence (again averaged over the 

5 spectral bands).  

 

Figure 8.9. Periodic power in the autocorrelation function for each modulator tier and 

nursery rhyme. The average power across the 5 spectral bands was taken. Modulation 

frequency is plotted logarithmically on the x-axis. The 3 modulators are plotted in different 

colours, dyslexics are shown in the solid line and controls in the dotted line.   

 

 

 For the Stress modulator, all participants produced a peak in modulation power at 2 

Hz (corresponding to the metronome beat rate). However, there were also two other 

prominent peaks - a larger peak at ~0.75 Hz and a smaller peak at ~1.5 Hz (corresponding to 

lags of 1333 ms and 666 ms). The larger, slower peak at ~0.75 Hz is likely to have arisen 

from the additional stress patterns in the ACF that occurred every 1000 ms-1500 ms. For the 

                                                 
35

 By the Wiener-Khinchin theorem, the Fourier transform of the autocorrelation function is equivalent to the 

power spectral density of the signal. 
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smaller power peak at ~1.5 Hz, since there was no corresponding peak in the ACF at ~666 

ms, this suggests that the 1.5 Hz power peak was simply a harmonic of the larger 0.75 Hz 

peak and should be ignored. Therefore, the power spectrum of the Stress modulator suggests 

that two key stress rates were present in participants' utterances - the 2 Hz metronome rate, 

and a slower rate of ~0.75 Hz corresponding to additional stress every 4 or 6 syllables. For 

the Syllable modulator (green), there was a clear peak in periodic power across the four 

nursery rhymes at 4 Hz, which was consistent with participants uttering two syllables per 2 

Hz metronome beat. For the Phoneme modulator, the peak in periodic power occurred around 

16 Hz, an integer multiple of the peak Syllable periodic rate of 4 Hz. This suggested that 

approximately 4 Phoneme modulator peaks occurred for every Syllable peak in the envelope. 

 From visual inspection, periodic power at low modulation frequencies ~0.5 Hz and 

1.5 Hz in 'Simple Simon' and 'Queen of Hearts' appeared to show a small difference between 

controls and dyslexics. However, these differences were not statistically-significant in an 

independent samples t-test. Therefore, for all 3 modulator tiers and all 4 nursery rhyme 

sentences, the envelope periodic power spectrum of both groups were similar.  

 This result was surprising given that in the manual analysis of vowel onsets, dyslexics 

had shown a clear difference in vowel-to-vowel onset timing for iambic rhymes, which 

should have been reflected in this analysis as dyslexics having a faster peak Syllable periodic 

rate than controls. However, since the periodic power of the modulators was calculated over 

the entire spoken sentence, it is possible that small specific differences (e.g. in vowel onset 

timing) could have been missed. Also, the ACF periodicity measure here is not sensitive to 

the exact pattern (e.g. phase patterns) of the modulator, only to whether that pattern repeats 

itself over time. Therefore, a sine wave of a given amplitude will have the same periodic 

power even if its pattern is shifted in phase by 1 pi radians, inverting all peaks to trough and 

vice versa. Therefore, in order to examine the specific prosodic stress patterns produced by 

controls and dyslexic, the prosodic strength index of each utterance was computed.  

 

(2) Prosodic Strength Index (Stress Pattern) 

 Recall from Chapter 5, Section 5.3.2 that the S-AMPH Prosodic Strength Index (PSI) 

converts the phase relationship between the Stress modulator and individual Syllable peaks 

into a measure of syllable prominence. By plotting the PSIs of consecutive syllables in an 

utterance, this allows one to quantify and analyse the syllable stress pattern contained within 
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that utterance. For this analysis, the manually annotated vowel onsets were used as markers 

for syllables, instead of automatically-detected peaks. The PSI values were computed for 

each utterance, and averaged over the three repetitions for each sentence.  

 The group mean PSI value for each of the four nursery rhyme sentences was then 

computed, as shown in Figure 8.10, where dyslexics are plotted in red and controls in blue. If 

control and dyslexic participants differed in the Strong-weak prosodic patterns that they 

produced, this would be evident as a different PSI pattern across the syllables of each 

sentence.  From visual inspection of the figure, the PSI pattern followed the expected trochaic 

or iambic stress pattern of each sentence. Moreover, both groups produced similar PSI 

patterns for each nursery rhyme. For example, both 'Mary Mary' and 'Simple Simon' (top row 

in the figure) showed a Strong-weak alternation pattern in PSI values, while 'St Ives' and 

'Queen of Hearts' (bottom row) showed the opposite weak-Strong alternation pattern.  

 

Figure 8.10. Group mean PSI values for the four nursery rhyme sentences, averaged over the 

3 repetitions for each sentence. High PSI values indicate 'Strong' stressed syllables while low 

PSI values indicate 'weak' unstressed syllables. Controls are shown in blue and dyslexics in 

red. Error bars indicate the standard deviation. 

 

 

"Ma -ry  Ma -ry quite con -tra -ry" "Sim -ple  Si -mon met  a   pie -man" 

 "as    I    was go -ing   to   St   Ives" "the Queen of Hearts 
she made some tarts" 
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 The PSI scores were entered into a repeated measures ANOVA taking nursery rhyme 

(4) and syllable number (8) as within-subject factors, and group (2) as the between-subjects 

factor. The results of the ANOVA revealed no significant main effect for Group 

(F(1,34)=2.40, p=.13), although dyslexics had slightly higher PSI values overall (0.34 for 

dyslexics vs 0.33 for controls). There were also no significant interactions between Group 

and nursery rhyme, or Group and syllable number. Although the three-way interaction 

between Group, nursery rhyme and syllable number approached significance (F(21, 

714)=1.52, p=.065), post-hoc Tukey analysis did not indicate any significant difference 

between controls and dyslexics for individual syllables within the rhymes. Therefore, the 

controls and dyslexics appeared to have produced statistically-equivalent Strong-weak 

prosodic patterns in their utterances. So far, therefore, the envelope-based AM measures 

indicated no difference between controls and dyslexics in terms of the overall periodic 

regularity of their utterances, as well as the specific prosodic patterns they produced.  

 

(3) Peak-Phase Distribution within the AM Hierarchy 

 In a final step, the peak-phase distribution within the modulation hierarchy was 

computed to examine the overall statistical relationship between tiers in the modulation 

hierarchy. Assuming that peaks corresponded to significant events (e.g. vowel nuclei or 

bursts of fricative consonant energy), this peak-phase distribution pattern would allow one to 

see how the timing of key speech events at one timescale was locally organised with respect 

to speech events at another timescale. For example, within a given stress foot, how early or 

late did participants tend to produce stressed or unstressed vowel nuclei? Or, within a given 

syllable, how early or late were the onsets and codas? This hierarchical analysis represents a 

marked shift away from isochrony (the focus of the earlier autocorrelation analysis in Section 

8.3.4.2 b(1)). Instead the focus is on local events occurring within the relative timescale of 

other events. In this analysis, 'phase' represents this relative timescale (e.g. 1 oscillatory cycle 

represents 1 stress foot), and 'peaks' represent the occurrence of local speech events (e.g. 

vowel nuclei). 

 For this analysis, peaks were detected automatically for both Syllable and Phoneme 

tiers (since only the syllable vowel onsets had been annotated previously and not individual 

phonemes). The concurrent phase of the next slowest tier for each peak was then recorded 

(i.e. Stress phase for Syllable peaks, and Syllable phase for Phoneme peaks). These phase 

values were then binned into 17 equally-spaced bins between -π and π radians. Since the 
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distribution patterns for each rhyme were quite variable, the four rhymes were averaged into 

a grand mean distribution, as shown in Figure 8.11. Appendix 8.2 shows the individual peak-

phase distributions for each of the 4 nursery rhymes. From visual inspection of Figure 8.11, 

the distribution pattern for Syllable peaks with respect to Stress phase (left subplot) appears 

to differ between controls and dyslexics, whereas the distribution pattern of Phoneme peaks 

with respect to Syllable phase (right subplot) appears similar.  

 

Figure 8.11. (Left) Grand mean distribution of Syllable tier peaks with respect to Stress 

phase. (Right) Grand mean distribution of Phoneme tier peaks with respect to Syllable phase. 

Controls are shown in blue, dyslexics in red. The distribution was calculated over 17 phase 

bins for each Spectral band, and the average over all 5 Spectral bands is shown. Errorbars 

show standard error, (*) indicates a significant difference between groups in the Fisher LSD 

post-hoc test, (^) indicates a significant difference in the Newman-Keuls post-hoc test. 

 

 

 To test for group differences, two repeated measures ANOVAs were conducted with 

Syllable peak distribution and Phoneme peak distribution as the dependent variables. For 

both analyses, Phase bin was the within-subjects factor, and Group was the between-subjects 

factor. For the Syllable peak distribution analysis, there was a significant effect of Phase 

(F(16,592)=38.08, p<0.0001), but no significant main effect of Group (F(1,37)=0.95, p=.34). 

However, there was a significant interaction between Group and Phase (F(16,592)=1.8243, 

p=.025), indicating that controls and dyslexics showed a different Syllable peak-Stress phase 

*^ 

* 

* 
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distribution pattern. To analyse these differences further, Fisher LSD and Newman-Keuls 

post-hoc tests were conducted. Both post-hoc tests indicated that dyslexics had a significantly 

higher percentage of peaks at 0π radian Stress phase (marked in Figure 8.11 with [*^]). In 

addition, the Fisher LSD post-hoc test also indicated significant group differences around -

0.3π radians and 0.5π radians (marked in Figure 8.11 with [*]). Dyslexics had a higher 

percentage of peaks at -0.3π radians, and a lower percentage of peaks at 0.5π radians. 

 These distribution differences indicate that dyslexics tended to produce more Syllable 

peaks around the peak of the Stress modulator. Conversely, dyslexics tended to produce less 

Syllable peaks on the downward slope of the Stress modulator. According to the AMPH and 

S-AMPH models, syllable peaks that occur near the peak of the Stress modulator correspond 

to stressed syllables. Therefore, dyslexics appear to be producing a higher proportion of 

stressed syllables as compared to controls. This observation is consistent with the higher PSI 

values for dyslexics seen in the previous section (although the PSI difference was not 

statistically significant). Secondly, the highest percentage of Syllable peaks for dyslexics 

occurred at -0.24π radians, which was earlier than controls, who showed the most Syllable 

peaks at -0.12π radians. Therefore, not only were dyslexic Syllable peaks more concentrated 

around the peak of the Stress modulator, but these 'Strong' syllable peaks also tended to occur 

slightly earlier in Stress phase than the Syllable peaks of controls. If Syllable peaks are taken 

to indicate vowels, then this difference in distribution pattern could indicate that dyslexics 

tend to produce stressed syllable vowels slightly earlier within the prosodic stress foot - a 

difference in syllable timing and organisation. 

 In contrast to these group differences for the Syllable peak distribution, there were no 

significant Group effects or interactions for the Phoneme peak distribution. Therefore, any 

differences in speech timing or hierarchical organisation between controls and dyslexics 

appeared to be specific to the slower Stress- and Syllable AM rates. The results of this peak-

phase analysis illustrate that while dyslexics utterances may have a similar periodicity profile 

and prosodic pattern as compared to controls, their local speech events actually have a subtly 

different temporal organisation. Specifically, stressed syllables tend to occur slightly earlier 

within the prosodic stress foot, and a higher proportion of syllables may be stressed. 

Consistent with the tapping data, these differences in temporal organisation specifically 

implicate Syllable timing, rather than Phoneme timing, as disordered in dyslexia.   
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8.4 CHAPTER SUMMARY & DISCUSSION 

 

 Developmental dyslexia is associated with phonological difficulties and also with 

rhythmic difficulties in speech and music tasks. In speech, rhythm-bearing syllable and 

prosodic stress patterns are associated with slow amplitude modulations (AM) in the speech 

envelope. Consequently, dyslexics' rhythm deficits may be associated with impaired 

perception and production of these slow AMs in the speech envelope. Here, dyslexic rhythm 

perception and production were investigated in 3 AM-based rhythm experiments. Across all 

three experiments, systematic group differences in Syllable-related timing and prosodic 

organisation were observed when AM-based measures were applied. Individual differences 

in Syllable-timing were also the most strongly related to performance in phonological and 

reading measures. By contrast, Phoneme-related timing appeared to be the same in both 

groups, and was not related to differences in phonology or reading. 

 In the first rhythm perception experiment, dyslexic and control participants identified 

nursery rhyme sentences that had been tone-vocoded using different AM tiers and tier 

combinations. These tiers were derived from the original 5-tier AM hierarchy in the AMPH 

model. In the perceptual experiment described in this chapter, participants were presented 

with sentences that had been vocoded using 29 ERBN-spaced spectral channels, yielding 

highly intelligible speech. For the 29-channel stimuli, the performance of dyslexics lagged 

behind that of controls for the Stress+Syllable and Syllable+Subbeat AM combinations. 

Although not statistically-significant at the p<.003 (Bonferroni corrected) level, these 

differences were the closest to statistical significance (p<.05). Since the result was not 

significant, firm conclusions cannot be drawn. However, it is interesting to note that 

dyslexics performed on par with controls when presented only with Stress AM, Syllable AM 

or Subbeat AMs on their own. A small gap in perfomance only emerged when two AM rates 

were presented in combination (either Stress+Syllable or Syllable+Subbeat), suggesting that 

dyslexics may not benefit as much as controls when information at the Syllable rate is 

combined with information at another AM rate. By contrast, there were no significant group 

differences when the sentences were vocoded with a 1-channel vocoder, again supporting the 

view that dyslexic deficits in AM perception only emerged when multiple streams of spectral 

and temporal information had to be combined. 

 In the second and third rhythm experiments, participants had to tap along to and 

produce metronome-timed speech respectively. For both experiments, a traditional analysis 
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was applied followed by an AM-based analysis. For the AM-based analysis, the S-AMPH 

model was used and speech AMs were divided accordingly into the three key modulation 

rates : 'Stress' (~2 Hz), 'Syllable' (~4 Hz) and 'Phoneme' (~20 Hz) rates. For both 

experiments, differences emerged between control and dyslexic participants, with dyslexic 

participants showing highly specific differences in syllable timing and organisation when 

AM-based analyses were applied.  

 In the tapping experiment, participants tapped along to the beat of the four metrically-

regular (trochaic or iambic) nursery rhyme sentences. The sentences had a 2 Hz (500 ms) 

stress rate where every other syllable was stressed. Traditional analysis revealed that the 

mean tap interval for dyslexics was 512 ms, which was close to the 'ideal' tapping rate, and 

was not significantly different from controls (520ms). Moreover, the standard deviation of 

dyslexics' tap intervals was even lower than that of the controls (±16 ms vs ±38 ms). There 

were also no significant difference between controls and dyslexics when the taps were 

analysed with respect to stressed vowel onsets. These results appeared to indicate that 

dyslexics had no problems when entraining to rhythmic patterns in speech.  

 However, when the taps were analysed at multiple tactus levels using an AM-based 

analysis, a specific group difference in Syllable tap timing was revealed. Dyslexics 

preferentially entrained to an earlier portion of the Syllable AM cycle, 0.7 radians (~1/9 of a 

cycle) ahead of controls. Therefore, dyslexics were producing taps that were highly regular in 

interval, but altogether shifted earlier in time, because they were aligned with a different 

portion of the speech signal. This result suggests that dyslexics perceived an earlier 'p-centre' 

as compared to controls. This finding is consistent with that reported by Wolff (2002), who 

found that dyslexic adolescents tended to anticipate the beat more than their non-dyslexic 

peers when tapping to a metronome. Here, the same effect is demonstrated for rhythmic beats 

in speech, and the dyslexic 'anticipation' effect is shown to be specific to Syllable-rate 

modulation patterns in speech.  

 In the third and final experiment, participants spoke the four nursery rhyme sentences 

in time to a 2 Hz metronome beat. While both control and dyslexic utterances contained 

similar metrical patterns, detailed analyses again revealed disruptions in syllable timing for 

dyslexics. For the more metrically-challenging iambic sentences such as 'St Ives', the syllable 

vowel-to-vowel interval for dyslexics was significantly shorter than for controls, indicating 

poorer control of syllable timing. Although the envelope-based AM measures indicated no 

differences between controls and dyslexics in terms of AM periodicity and overall prosodic 
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patterning, there was a subtle difference in the way that Syllable peaks were distributed with 

respect to Stress phase. Across the four nursery rhyme sentences, dyslexics tended to produce 

stressed syllable vowels slightly earlier within the prosodic stress foot, and they also tended 

to produce stressed syllables more often than controls. Therefore, in both rhythm entrainment 

and production experiments, even highly-compensated adult dyslexics showed differences in 

speech syllable timing and prosodic organisation. 

 Finally, across all three experiments, individual differences in performance on the 

rhythm-based tasks were related to participants' performance in reading, spelling and 

phonology. In the vocoder perceptual experiment, performance for Stress+Syllable vocoded 

AMs was the most strongly-related to reading and phonology. In the tapping experiment, 

Syllable AM phase of tapping was significantly related to spelling, reading and phonology. 

Finally, in the production task, syllable vowel-to-vowel intervals for the most challenging 

nursery rhyme (St Ives) were again strongly related to reading and phonology. Therefore, 

individual differences in AM-based Syllable timing were the most consistently related to 

reading and phonology. Differences in syllable timing perception could affect the way that 

dyslexics segment continuous speech into syllables and words, leading to altered or 

incomplete phonological representations as compared to controls. For example, if dyslexics 

perceive a syllable to begin earlier, they may also perceive it to end earlier, and therefore fail 

to encode the coda of the syllable completely. These altered or incomplete phonological 

representations could then make it difficult for dyslexics to acquire the letter-sound 

correspondences necessary for learning to read an alphabetic orthography.  

 Since neuronal oscillations in the theta range are thought to entrain to syllable 

patterns in speech (Luo & Poeppel, 2007), the dyslexic differences in syllable timing could 

stem from altered neuronal activity in the theta band. Moreover, since neuronal oscillations in 

the auditory cortex are hierarchically-nested (Lakatos et al, 2005), altered theta (syllable rate) 

activity could also be an indirect consequence of atypical delta (stress rate) activity, which 

could explain why prosodic organisation (e.g. syllable vowel timing within the stress foot) 

also appears to be disrupted in dyslexia. 
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PART IV CONCLUSIONS & DISCUSSION 
 

 

 In both child-directed speech and dyslexia, envelope-based AM measures provided 

novel insights into the data. For example, analysis of the Syllable peak-Stress phase 

distribution patterns revealed that CDS was associated with lower conditional entropy than 

ADS. Analysis of the periodicity of modulation tiers revealed that surprisingly, even child-

directed readings of narrative stories were strongly rhythmic in nature. These differences 

indicated shifts in the temporal organisation and structure of speech in order to accommodate 

the needs and abilities of the child listener, perhaps to facilitate speech segmentation. In the 

dyslexia case study, AM-based analysis uncovered subtle differences in the Syllable phase of 

tapping between dyslexics and controls, as well as differences in their hierarchical 

organisation of  produced Stress and Syllable modulation patterns. These deficits in syllable 

timing and temporal organisation had been predicted in theory (e.g. Goswami, 2011), but had 

been difficult to uncover using conventional methods of speech analysis. 

 A key benefit of using envelope-based measures (e.g. based on the S-AMPH model) 

for rhythm-based measurement is that they represent a move away from traditional durational 

measures of isochrony. Instead, the focus is on local relationships between different rates of 

amplitude modulation (or different beat tactus levels), allowing for more subtle differences to 

emerge. Moreover, although the S-AMPH model was developed to represent normal speech 

rhythm perception, its parameters may be modified to produce 'abnormal' speech rhythm 

perception, such as that seen in dyslexia. Therefore, the S-AMPH model could also 

potentially be a useful tool in understanding the etiology of speech rhythm disorders. 
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CHAPTER OVERVIEW 
 

In this thesis, the over-arching aim was to develop an explanatory account of speech 

rhythm based on the dynamic amplitude modulation (AM) cues in the speech envelope.  

Toward this end, two AM Phase Hierarchy (AMPH) models were developed and evaluated. 

Apart from being useful rhythm-measurement systems, these models also possess 

explanatory power about the causal mechanisms underlying amplitude-based rhythm 

perception. For example, it was demonstrated  in the tone-vocoder experiment in Chapter 3 

that human listeners rely on phase relationships between Stress and Syllable rates of 

amplitude modulation to infer Strong-weak syllable patterning. The AMPH models capture 

this feature of human rhythm perception and instantiate it in as a formal computational 

scheme (e.g. the Stress Phase Code/Prosodic Strength Index), so that predictions about 

perceived rhythm can be generated about any speech sequence. Consequently, when rhythm 

perception and production go awry, as demonstrated in Chapter 8 for adults with 

developmental dyslexia, these deficits can be understood in terms of mis-specified Stress-

Syllable phase relationships. Conversely, when speech rhythmicity is enhanced, as 

demonstrated in Chapter 7 for child-directed speech, this enhancement can also be explained 

in terms of strengthened Stress-Syllable phase relationships (i.e. tighter hierarchical nesting). 

Therefore, the two AMPH models are 'models' in the sense that they instantiate the 

relationship between the amplitude cues in the speech envelope and the speech rhythm 

patterns perceived by the listener.  

At the heart of both AMPH models are two major conceptual innovations - the AM 

hierarchy and the Stress Phase Code (or Prosodic Strength Index, PSI). The core features of 

these conceptual innovations are discussed further in Section 9.1 The main contribution of 

this thesis is that the AMPH models are methodological innovations as amplitude-based 

accounts of speech rhythm. These are complementary to (and not in competition with) 

previous duration-based accounts of speech rhythm. The findings in this thesis also have 

wider theoretical implications for possible neural mechanisms of speech rhythm perception, 

phonological development, and mechanisms of speech prediction and attention allocation. 

These wider theoretical implications are discussed in Section 9.2. Finally, future possible 

research questions are discussion in  Section 9.3. 
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9 FINAL DISCUSSION & CONCLUSION 

 

9.1 AMPH MODELS AS METHODOLOGICAL INNOVATIONS FOR 

AMPLITUDE-BASED RHYTHM DETECTION 

 

9.1.1 THE AM HIERARCHY 

 

 The AM hierarchy is a novel way of representing modulation patterns in the speech 

envelope in accordance with the linguistic prosodic hierarchy (Chapter 2, Section 2.1). 

Ascending tiers in the AM hierarchy capture the modulation patterns generated by linguistic 

units of increasing grain size, such as phonemes, syllables and stress feet. For example, peaks 

in the Syllable AM tier commonly correspond to syllable vowel nuclei (Chapter 5, Section 

5.2). This hierarchically-nested representation reveals the unique activity at each linguistic 

level (or tier), as well as the relationships between linguistic levels (tiers). For the purposes of 

rhythm detection, the Stress AM and Syllable AM tiers contain the most relevant prosodic 

information (as shown in the tone-vocoding experiment in Chapter 3, Section 3.2.1). 

However, other AM tiers in the hierarchy are also expected to contain important speech 

information, such as phonetic cues for speech intelligibility (e.g. Rosen, 1992).  

 The AMPH and S-AMPH models used AM hierarchies of different origin and 

composition. In the theory-led AMPH model, the 5-tier AM hierarchy was strictly 

theoretically-defined on the basis of prior literature (Chapter 2, Section 2.4). In the data-led 

S-AMPH model, the 3-tier AM hierarchy emerged solely from the modulation statistics of 

the speech envelope, free from theoretical constraints (Chapter 4, Section 4.4). Yet in both 

cases, the resulting AM hierarchies showed important similarities, suggestive of a 

convergence between theory and data (modulation statistics). Specifically, the two most 

important AM tiers for speech rhythm detection - Stress AM and Syllable AM tiers - were 

conserved across both AM hierarchies, albeit with a difference in the modulation bandwidth 

for the Syllable tier. This crucial similarity allowed the AMPH and S-AMPH models to 

operate on essentially the same basis for identifying 'Strong-weak' syllable stress patterns (i.e. 

the AMPH Stress Phase Code was equivalent to the S-AMPH Prosodic Strength Index).  
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 The idea that the amplitude envelope consists of a nested hierarchy of AMs, each 

transmitting a different type of speech information is an appealing one. Such an AM 

hierarchy would have useful properties that could facilitate speech processing, as discussed 

later in Section 9.3. However, in this thesis, the AM hierarchies are merely convenient ways 

of representing the modulation information in the speech envelope. It is not claimed that 

these AM hierarchies are invariant structural components of the speech envelope, arising 

from some inherent physiological constraint or mechanism. Before such a structural claim 

can be made, several important criteria must be satisfied. First, there must be empirical 

evidence for functional separation of speech modulation information into tiers. Second, there 

must be empirical evidence for hierarchical nesting between these tiers. Third, it must be 

demonstrated using some objective measure (e.g. based on maximum likelihood or entropy) 

that the hierarchical representation is the most optimal, stable, or parsimonious representation 

of modulation information in the envelope. Fourth, and most importantly, a plausible 

physiological source (or sources) that would be capable of producing such hierarchical 

patterning must be identified.  

 In this thesis, there is evidence to satisfy the first and second criteria. Functional 

separation of AM tiers was demonstrated in the modulation rate PCA analysis (Chapter 4, 

Section 4.4) and from the results of the tone-vocoder experiment (Chapter 3, Section 3.2.1).  

Hierarchical nesting was demonstrated in the non-uniform peak-phase distribution patterns of 

Syllable peaks with respect to Stress phase, and Phoneme peaks with respect to Syllable 

phase (Chapter 5, Section 5.3, Chapter 7, Section 7.2.4.2). However, more research is 

required to address the third and fourth criteria. Nonetheless, it should be mentioned that a 

plausible candidate for generating these hierarchical AM patterns could be the motor 

articulators, whose actions themselves are strongly co-ordinated in time over different 

timescales (e.g. Kelso et al, 1986; Saltzman & Byrd, 2000). 

 

9.1.2 THE STRESS PHASE CODE (OR PROSODIC STRENGTH INDEX) 

 

 The Stress Phase Code (or PSI) is a simple computational scheme for deriving 'S-w' 

prosodic rhythm patterns from the phase relationship between Stress and Syllable AM tiers in 

the AM hierarchy. This algorithm captures the intuition that syllable prominence is relative 

(e.g. Liberman & Prince, 1977) by making use of Stress phase (a cyclical, relative measure) 

to code for syllable prominence. Human listeners also rely on this phase relationship when 
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making rhythm judgments (Chapter 3, Section 3.2.2), suggesting that the Phase Code/PSI is 

correctly capturing an aspect of human rhythm perception. Furthermore, the Stress-Syllable 

phase relationship can also be treated as a dependent variable in experimental analysis. For 

example, dyslexic individuals entrain to a different Syllable phase in speech, and also 

produce speech with a different Stress-Syllable phase-peak distribution (Chapter 8). 

 As a method for automatic stress transcription, the PSI method has an accuracy of 

~90% for metronome-timed speech and ~70% for freely-produced speech (Chapter 6, Section 

6.2). This compares favourably with the performance of other methods of automatic stress 

detection, where an accuracy level of around 65% is achieved when only amplitude cues are 

used (Silipo & Greenberg, 1999).  

 Therefore, the Stress Phase Code or PSI operates in a psychologically-valid fashion, 

and performs adequately for prosodic stress transcription. The first factor (psychological 

validity) is of little importance for a method whose sole aim is automatic stress transcription, 

since accurate results may also be obtained by completely 'non-psychological' means (e.g. 

machine learning). However, in this thesis, the Stress Phase Code and PSI form part of a 

larger psychological account of amplitude-based rhythm perception. Therefore, the fact that 

human listeners also rely on the Stress-Syllable phase relationship for determining rhythm 

patterns is psychologically significant. Accordingly, mis-alignments or enhancements in the 

Stress-Syllable phase relationship, such as those that occur in dyslexia (Chapter 8, Section 

8.3.4.2 (b3)) and child-directed speech (Chapter 7, Section 7.2.4.2), can also be inferred to 

have psychological and functional significance. In this sense, the Stress Phase Code and PSI 

are methodological innovations for psychological inquiry into speech rhythm perception.  
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9.1.3 POSSIBLE IMPROVEMENTS TO THE AMPH MODELS  

 

 The S-AMPH model addressed two of the major short-comings of the original AMPH 

model. However, further improvements can still be made in these areas : 

 Methodological Improvements Different methods could be used to extract the AM 

hierarchy other than those used in this thesis. For example, wavelet analysis, or empirical 

mode decomposition (Huang et al, 1998), which is especially suited for nonstationary 

processes, may be useful. The parameters used in the model (e.g. the mathematical function 

used to compute the PSI, or the PSI threshold) could also be refined, for example by 

systematically evaluating the outcomes when different parameter values are used (e.g. via a 

grid search). Different statistics could also be computed from the AM hierarchy, for example 

the phase-power nesting between different tiers in the hierarchy, or scale-invariant properties 

across the hierarchy. 

 Combining Amplitude, Duration and Pitch Cues to Rhythm. The AMPH models are 

based solely on amplitude changes in the speech envelope, and do not incorporate other cues 

to speech rhythm - such as duration and pitch. To form a more holistic representation of 

speech rhythm, these amplitude-based cues could be combined with duration and pitch-based 

cues in a hybrid model of speech rhythm. For example, coupled oscillator models are similar 

in principle to the AMPH models, but are designed to capture duration or timing changes 

rather than amplitude changes in speech. A hybrid duration-amplitude model could be 

envisaged where the hierarchical tiers represent amplitude modulation on different 

timescales, but the pattern of modulation is modelled on the behaviour of coupled oscillators.  

 Incorporating Effects of Learning. The AMPH models are based solely on 'bottom-up' 

acoustic information, and do not incorporate any 'top-down' effects of learning or prior 

experience. Therefore, these models can only simulate 'naive' rhythm perception. In view of 

this, it may be interesting to develop a version of the AMPH that is capable of 'learning' 

speech rhythm patterns. For example, prior knowledge of rhythm patterns could be used to 

smooth or categorise the input data, so that the rhythm pattern is 'interpreted' through the lens 

of experience (e.g. Bayesian learning). Such a model could then be used to model 

developmental changes in rhythm perception as children acquire more experience with the 

dominant rhythm patterns in their native language. 
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9.2 WIDER IMPLICATIONS OF THESIS FINDINGS 
 

 In this section, the wider implications of the findings in this thesis for speech 

perception are discussed. 

 

9.2.1 A POSSIBLE NEURAL OSCILLATORY REPRESENTATION OF SPEECH 

RHYTHM 

 

 Speech is most commonly described in terms of spectral changes, such as formant 

patterns and transitions. The AMPH and S-AMPH models proposed in this thesis take a less 

common approach, describing speech in terms of its amplitude modulation (AM) structure. 

The AM hierarchies used in these models provide a potential mechanistic link between 

speech elements of the linguistic prosodic hierarchy (i.e. feet, syllables, phonemes) and 

neuronal oscillatory architecture (i.e. delta, theta, gamma rates) as noted by multi-time 

resolution models of speech perception (e.g. Ghitza & Greenberg, 2009; Giraud & Poeppel, 

2012). Amplitude modulation activity in speech, particularly in the syllable range, can 

generate robust neural entrainment with high temporal and spectral fidelity (e.g. Pasley et al, 

2012, Luo & Poeppel, 2007, Aiken & Picton, 2008). Theoretically therefore, the AM patterns 

in the speech envelope could represent linguistic units on the one hand, and drive (entrain) 

neural activity on the other hand.  

 For example, the Stress-Syllable phase relationships observed in the speech envelope 

may also elicit patterns of phase-locked activity between corresponding delta and theta 

oscillatory rates. This delta-theta phase-locked pattern could then form part of the neural 

representation of speech rhythm, being driven by Stress-Syllable relationships in the speech 

envelope. This is an exciting prospect, because it suggests that the syllable detection and 

phase-decoding mechanisms proposed in the AMPH models could also be used by neuronal 

oscillations in the brain to track syllable patterns (via theta oscillations) and infer rhythm (via 

theta-delta phase relationships), as illustrated in Figure 9.1. Therefore, the AMPH models 

represent a 'neuro-plausible' simulation of naive human speech rhythm perception, via the 

neural mechanism of oscillatory entrainment. 
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Figure 9.1. Illustration of AM-based speech rhythm perception via neural oscillatory 

entrainment to speech AM patterns. 

 

 

 

 

 

 

 

 

 

 

9.2.2 HIERARCHICAL PROCESSING OF SPEECH ON MULTIPLE TIMESCALES 

 

 As discussed in Section 9.1, a major innovation of the AMPH models is that speech is 

represented as an hierarchy of AMs at different rates, where each AM rate transmits a 

different type of speech information such as prosodic stress, syllable pattern or phonetic 

contrast. The 3 modulation tiers form a nested hierarchy because each tier governs the 

activity of its 'daughter' (faster) tier. For example, the phase of the Stress AM constrains the 

peak activity of the Syllable AM, so that the distribution pattern of Syllable peaks with 

respect to Stress phase is non-uniform, with Syllable peaks occurring more frequently in 

some Stress phase regions than others (e.g. Chapter 5, Section 5.3). Likewise, at the next 

level of the hierarchy, the distribution pattern of Phoneme peaks is also constrained by 

Syllable phase (Chapter 7, Section 7.2.4.2). This hierarchical nesting of speech AMs is 

reminiscent of the proposed hierarchical nesting of neuronal oscillations in the auditory 

cortex (Lakatos et al, 2005). In the macaque auditory cortex, the amplitude of theta (syllable-
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rate) oscillations is modulated by delta phase, and the amplitude of gamma (phoneme-rate) 

oscillations is modulated by theta phase
36

.  

 In this thesis, the focus was on the two slower tiers within the AM hierarchy - Stress 

and Syllable tiers - as carriers of speech rhythm information. However, the faster Phoneme 

tier also transmits important speech information, such as phonetic cues to manner of 

articulation, voicing, and vowel identity (Rosen, 1992). As speech unfolds dynamically in 

real time, these different types of speech information are presented concurrently to the 

listener. To capture both slow and fast information, speech analysis has been proposed to 

occur on multiple timescales (e.g. Poeppel, 2003). However, these multiple streams of speech 

information must eventually be bound together into a single percept. This requires that 

information from each stream be correctly temporally aligned with other streams. The format 

of the AM hierarchy supports both these functions - speech sampling on multiple timescales, 

and temporal alignment/binding.  

 For example, speech could be sampled on different timescales according to the 

different tiers in the AM hierarchy (eg. Stress, Syllable, Phoneme), resulting in 3 discrete 

information streams. The information in each stream could also be re-combined correctly, 

making using of the hierarchically-nested phase alignment between tiers (e.g. Syllable AM 

peaks are aligned with 'high peak probability' regions of Stress AM phase). Therefore, a 

phase-nested AM hierarchy could be a useful way to represent the various types of 

information in speech. If the brain entrains to this AM hierarchy, it could generate an 

equivalent neural phase-nested hierarchy where each neural oscillatory rate carries speech 

information on a different timescale. This neural phase-nested hierarchy (e.g. of delta, theta 

and gamma rates) could likewise allow the brain to encode different types of speech  

information separately, yet maintain their temporal alignment (e.g. Giraud & Poeppel, 2012). 

Therefore, the AM hierarchy may support neural encoding of speech information on multiple 

timescales.  

 

 

 

                                                 
36

 In Lakatos et al's study, a delta phase of 0.6π radians was associated with the highest theta amplitude, while a 

delta phase of -0.5π radians was associated with the lowest theta amplitude. In view of this, it is interesting to 

note that in naturally-produced speech relative to metronome-timed speech, the distribution of Syllable peaks 

shifts forward in Stress phase so that most Syllables peaks now occur around -0.2π and 0.5π radians, rather than 

around 0π and ±π radians (Chapter 5, Section 5.3.1). This forward shift could occur because speakers naturally 

take advantage of the neural theta enhancement that occurs around delta 0.6π radians in the auditory cortex. 
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9.2.3  AM PATTERNS AS THE BASIS FOR GENERATING PREDICTIONS & 

ALLOCATING ATTENTION  

 

9.2.3.1 Predicting Prosodic Stress 

 

 We now turn to discussing a potential role for AM patterns in facilitating 'real-time' 

speech processing via 'online' stress prediction. In phoneme monitoring tasks, reaction times 

to phonemes in stressed syllables are faster than reaction times to phonemes in unstressed 

syllables (Pitt & Samuel, 1990; Cutler, 1976; Cutler & Foss, 1977; Shields et al, 1974). This 

facilitatory effect is not entirely due to the greater acoustic salience of stressed syllables. 

Rather, participants also appear to be able to anticipate or predict future stress, and greater 

anticipation for stressed syllables as compared to unstressed syllables contributes to the 

reduction in reaction time. Cutler (1976) specifically examined this stress prediction effect, 

using the intonational contour of the preceding sentence to generate a strong or weak 

prediction about future syllable stress on a target word. In her experiment, participants were 

told to respond to a target phoneme like /d/ in the word 'dirt'. She then recorded two versions 

of a sentence containing the target word. Both versions of the sentence contained the target 

word in the same location, but they differed in terms of whether the word 'dirt' received a 

strong stress emphasis (shown in CAPS) or not, as shown below : 

STRONG stress : "She managed to remove the DIRT from the rug, but not the berry stains" 

WEAK stress : "She managed to remove the dirt from the RUG, but not from their clothes."  

 The word 'dirt' was then removed (spliced out) from each sentence, and replaced with 

a neutral token, so that the acoustic features of the target word in both sentences would be 

identical. However, the intonational contour of the initial 7 syllables before the occurrence of 

the target word ("She managed to remove the..") was left intact, and continued to cue either a 

future stressed or unstressed target word respectively. Therefore, any reaction time 

differences to the target phoneme /d/ would not be due to acoustic differences in the target 

word itself, but solely due to prediction effects generated by the preceding intonational 

contour of the first 7 syllables. Remarkably, Cutler managed to measure a significant 40 ms 

difference in reaction time between the two sentences, demonstrating that merely the 

prediction of an upcoming stressed syllable was sufficient to cause a measurable drop in 

reaction time.   
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 Although Cutler did not measure the precise intonational differences between the two 

versions of the sentence, it was noted that the relative pitch, duration and amplitude assigned 

to each word all differed markedly between the sentences. Therefore, it patterns of change in 

pitch, amplitude and duration across the first 7 syllables all cued whether a stressed syllable 

was imminent, or further away. Figure 9.2 illustrates how participants could be generating 

their stress predictions based on the shape of the intonation contour.  

 

Figure 9.2. Illustration of stress prediction using the intonation contour (or Stress AM 

phase). The oscillatory black lines represent the intonation contour (e.g. pitch or amplitude 

contour), red dots indicate syllables. The x-axis represents time, and the y-axis represents the 

relative degree of stress. The vertical dotted line marks the location of the target word 

('dirt'). This target word is predicted to have strong stress in the top sentence, but weaker 

stress in the bottom sentence. Participants' predictions are only based on the first 7 syllables 

(dots) before the target word (dotted line). 

 

 

 Here, the intonation contour (e.g. representing either pitch or intensity) of each 

sentence used by Cutler is depicted as following an oscillatory cycle (shown as a black line). 

Syllables in each sentence (denoted as red dots) fall at different points on the contour, where 

syllables at the top of the contour receive the most stress, and those at the bottom are the least 

stressed. Note that in the figure, the exact timing of each of the first 7 syllables is identical for 
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both sentences (i.e. they have the same x-coordinates in the graph), the only difference is in 

the phase of the intonation contour that the syllables occupy. In the first sentence, the first 7 

syllables occupy the upward-going slope of the intonation contour, but in the second 

sentence, the syllables occupy the trough of the intonation contour. Therefore, if participants 

were tracking the on-going phase of the intonation contour, the pattern of the first 7 syllables 

in the top (strong prediction) sentence would lead participants to predict that the next syllable 

was very likely to be stressed, since the phase of the seventh syllable ('the') was already very 

near the peak of the contour. Conversely, the pattern of the first 7 syllables in the bottom 

(weak prediction) sentence would indicate that a stressed syllable was still some way away, 

since the 7th syllable remained near the base of the intonation contour.  

 Note that this method of stress prediction does not require isochrony in syllable 

timing, or in stress timing. Rather, all that is required to make the prediction about stress 

status is the phase trajectory of the intonation contour during the initial 7 syllables, and an 

assumption that the target word 'dirt' will continue the trend (following the current trajectory 

of the oscillatory cycle). Of course, the sentence is unfolding over time, so participants might 

also have to predict when the target word will occur, in addition to how stressed it is likely to 

be. Listeners could estimate this timing based on preceding syllable rate, and this temporal 

prediction should not differ between the two sentences in this example. Also, the perfectly 

sinusoidal intonation contour used in this example might not be realistic. However, in the 

context of the AMPH and S-AMPH models, this intonation contour could correspond to the 

Stress AM pattern, since the phase of the Stress AM also indicates prosodic prominence. 

Although the Stress AM is not perfectly sinusoidal (except in metrical speech), the phase of 

the Stress AM does tend to change smoothly over time and phase jumps are rare. Therefore,  

it may be possible to make short-term stress predictions based on the local phase trajectory of 

the Stress AM, as illustrated in Figure 9.2.  

 Why is it important to be able to generate predictions about up-coming stress and 

prominence? One suggestion is that this helps the listener to allocate his or her attentional 

resources more effectively. According to this argument, attention is preferentially allocated to 

stressed words during speech processing because stressed words are likely to contain 

important semantic content (for example, the contrastive stress applied in Cutler's sentences). 

If the aim of speech processing is to quickly infer the speaker's meaning with minimum 

processing effort, it would be parsimonious to allocate precious attentional resources 

disproportionately toward portions of speech that are high in 'information' content (i.e. 
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stressed words) at the expense of portions of speech that are low in 'information' content (i.e. 

unstressed words). Therefore, the faster reaction times to predicted stressed words may also 

be accompanied by greater attention to these predicted stressed words.  

 This predictive attention hypothesis could be investigated in an EEG paradigm using 

Cutler's (1976) original task, but looking for attentional modulation of EEG components 

(such as the P1 and N1) elicited by the target word. Moreover, if greater attentional resources 

are directed toward words that the listener expects to be stressed, there might also be 

secondary effects on memory and learning for these words. For example, words that are 

predicted to be stressed rather than unstressed could be more strongly encoded in memory, 

and better recalled by the listener. Conversely, if a listener is unable to generate these stress 

predictions accurately (e.g. due to poor tracking of Stress AM phase patterns or the pitch 

contour), he or she would benefit less from these anticipatory effects. This could lead to an 

overload on attentional resources and slower speech processing because he or she is trying to 

attend to and remember everything, rather than selectively attending only to 'important' 

(stressed) speech information. 

 

9.2.3.2  Predicting Speech Timing 

 

 A related concept to stress prediction is the concept of rhythmic prediction, or 

temporal expectancy. Here, the emphasis is on being able to predict when speech information 

is likely to occur, not just whether it will be stressed or unstressed. Such temporal expectancy 

has also been formally linked to attentional allocation, for example by Jones et al (2002) in 

her Dynamic Attending Theory. According to this theory, listeners engage in 'anticipatory 

attending', which is a temporal shift of attention that anticipates (expects) the onset of a 

sound. Unlike many top-down models of attentional orienting, here, the build-up of temporal 

expectations is purely stimulus-driven. In a typical paradigm, listeners may be asked to 

compare a standard tone with a test tone, where the test tone occurs at either an expected or 

unexpected time. To create temporal expectations, the standard and test tones are separated 

by a sequence of 'distractor' tones (of different pitch) that are all presented with the same 

inter-stimulus interval (ISI). The test tone is then presented with either the same ISI 

(fulfilling temporal expectations), or with a shorter or longer ISI (violating temporal 

expectations). Participants typically show the best performance in pitch discrimination when 

the ISI of the test tone matches the ISI of the distractors, and performance is poorer when the 
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test tone is either presented 'too early' or 'too late'. Jones argues that the differential 

performance on the task reflects the fact that participants' attention is being directed toward a 

specific future point of time by rhythmic expectancies generated over the regular distractor 

ISIs. Stimuli that occur at the expected time benefit from temporal attentional focus and are 

processed more effectively. Stimuli that do not occur at the expected time miss out on these 

attentional benefits. Interestingly, this effect persists even when participants are told 

explicitly to ignore the timing of the tones and focus exclusively on pitch discrimination (a 

non-temporal dimension), suggesting that temporal expectations can develop automatically 

and involuntarily. 

 Do such rhythmic expectancies also form in natural speech, heightening our attention 

at predicted times, and enhancing speech processing at these times? Cutler and others (Cutler, 

1986; Cutler & Foss, 1977; Martin, 1972) have proposed that successive stressed syllables in 

continuous speech could act like a metrical or rhythmic grid, where the temporal regularity 

from one stressed syllable to the next allows the listener to predict the future occurrence of 

the next stressed syllable. In other words, it is argued that listeners form temporal predictions 

on the basis of durational isochrony between stressed syllables in an utterance, allowing these 

stressed syllables to be more efficiently processed. However, the idea of durational isochrony 

in speech has now largely been discredited (e.g. Dauer, 1983; Arvaniti, 2009). Therefore, if 

temporal predictions do form in speech, they must either be based on non-isochronous stress 

intervals, or on other speech features apart from stress intervals.  

 How much anisochrony can listeners cope with before rhythm detection becomes 

impossible? Madison & Merker (2002) found that listeners could tolerate an average of 8.6% 

deviation in stimulus anisochrony before they were no longer able to find a regular pulse in a 

tone sequence. In the context of their study, this meant that for a tone sequence with an 'ideal' 

ISI of 600 ms, the actual ISI of tones could vary by up to ±50 ms (i.e. between 550 ms to 650 

ms) before the rhythmic pulse was lost. A tolerance of close to 10% suggests that human 

listeners are fairly forgiving of anisochrony in rhythm detection. However, the average 

variability of interstress intervals in English far exceeds this margin of toleration. For 

example, Dauer (1983) reported that the average interstress interval in speech was around 

450 ms, with a standard deviation of approximately 150 ms or 33%. These figures suggest 

that interstress intervals would not be perceived as rhythmically regular because their 

variability is simply too high for a regular pulse to be detected. By extension, it would be 
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difficult for listeners to generate strong rhythmic predictions if they were not able to find a 

rhythmic 'pulse' in the first place.  

 However, Dauer's figures reflect the statistical distribution of interstress intervals over 

a large speech corpus, and the high standard deviation could partly be due to differences in 

speaking rate within and between utterances. If one considered just 2 or 3 consecutive stress 

intervals from the same utterance, these might not have such a large variation, and it might be 

possible for listeners to form short-term temporal expectations 'on the fly' based on these 

local stress intervals. There is also anecdotal evidence that temporal expectancies can be 

generated in speech, and that speech timing is not completely unpredictable. For example, in 

the use of 'comedic timing', the speaker consciously manipulates listeners' expectancies in 

order to deliver a punch line with the maximal effect. Also, when two speakers are deeply 

engaged in conversation, both speakers can be synchronised to the extent that one speaker 

finishes the sentence of another speaker without breaking the flow of conversation, which 

must require both semantic and temporal prediction. However, much more empirical study is 

required to determine the basis of these effects. 

 A second possibility is that listeners generate temporal expectancies in speech using 

sources of information external to the speech signal. Unlike rhythmic expectancy (which is 

based on finding a regular pulse pattern), these temporal expectancies are not based on 

rhythm, but on strong associative or causal relationships that predict the occurrence of speech 

events within a narrow window of time. Perhaps the strongest non-acoustic predictor of 

speech events is the visual temporal information from the movement of the articulators (e.g. 

lips and jaw), or from other motor gestures. For example, the onset of mouth opening 

typically preceeds the onset of auditory speech information by around 200 ms (Schroeder et 

al, 2008). Since there is a physical causal link between the mouth opening and speech sounds 

being produced, this visual cue is highly reliable for predicting the onset of speech 

information
37

. To explain how this prediction mechanism could work, Schroeder and 

colleagues (e.g. Schroeder et al, 2008) proposed that the early incoming visual information 

causes a phase-resetting of low-frequency neuronal oscillations in the auditory cortex into an 

                                                 
37

 Moreover, the shape and size of the mouth will also typically correlate with the type of speech sound that will 

be produced. There is evidence that listeners do generate expectations based on this auditory-visual relationship, 

because violations of the relationship will typically produce 'fusion' illusions (rather than resulting in the visual 

information being ignored). For example, in the McGurk effect (McGurk & MacDonald, 1976), when presented 

with an image of a speaker saying '/ga/' that is paired with a soundtrack of the syllable '/ba/', listeners commonly 

report hearing '/da/' instead. This illusion occurs because the listener is attempting to reconcile what he predicts 

he should hear (based on the visual cues) with what he actually hears. In normal conditions, viewing the face of 

the speaker also increases the intelligibility of spoken communication (Sumby & Pollack, 1954). 
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optimal phase of excitability. This phase-resetting results in speech information being 

processed more effectively because the brain is 'ready' to receive the auditory information by 

the time it actually arrives 200 ms later. Moreover, this temporal prediction mechanism does 

not depend on speech being rhythmic because no matter how erratic the utterance, visual 

articulatory information will always reliably precede the corresponding auditory information 

at every point. However, this auditory-visual mechanism can only predict speech events up to 

200 ms in advance, or approximately 1 syllable in advance. If human listeners do indeed 

predict the timing of consecutive stressed syllables in normal speech (i.e. about 450 ms in 

advance), as argued by Cutler  and others (Cutler, 1986; Cutler & Foss, 1977; Martin, 1972), 

then other mechanisms will be required.  

 Therefore, while temporal prediction in speech could bestow advantages in speech 

processing via attention 'pre-allocation' (e.g. Jones' dynamic attending theory),  it is not clear 

what acoustic cues and mechanisms could be used by the human auditory system to generate 

temporal predictions beyond ~200 ms. Nonetheless, the generation of temporal predictions 

using patterns and regularities in the acoustic signal has been proposed to be a fundamental 

function of the auditory system (e.g. Winkler et al, 2009). AM patterns in speech could be a 

useful source of such temporal patterns and regularities, and future study could reveal long-

range AM patterns and relationships that could be used for such temporal prediction.  

 

9.2.4 'PHONOLOGY' AS STORED SPECTRO-TEMPORAL PATTERNS  

 

 If the brain can represent the AM patterns in speech in fine detail (e.g. Pasley et al, 

2012), this raises the possibility that these encoded AM patterns also constitute part of our 

mental representations of words and speech sounds, or 'phonology'. According to Port's 

theory of 'rich phonology' (e.g. Port, 2007, 2008, 2010), words are not stored in memory as 

abstract combinations of phones or phonemes (i.e. an alphabetic-like representation). Rather, 

words are represented in rich, concrete detail, capturing the full range of spectro-temporal 

variation in the acoustic signal. Moreover, Port argues that word representations in memory 

also include other 'episodic' detail, such as how the word was said, and who said it (i.e. 

prosody, speaker identity, etc). Therefore, Port rejects the traditional linguist's view that 

words are made from building blocks of phonemes, arguing that this view is a cultural artifact 

of having learned an alphabetic script for language. If Port is correct, this has important 

implications for language learning. Infants learning a new language would be capturing the 
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full range of spectro-temporal detail available in the speech signal - including formant 

patterns and AM patterns. For example, rather than representing the word "cat" as a 

combination of three discrete and invariant phonemes [k], [æ] and [t], infants could be 

encoding a single complex and continuous spectral-temporal pattern that would be different 

each time they heard the word being uttered (i.e. because of a different context or speaker). 

Each of these different exemplars of the spoken word "cat" would then be stored as separate 

entries in the infants' memory. Therefore, the next time the infant heard an utterance that 

sounded like "cat", the infant could compare the new utterance (in full spectro-temporal 

detail) to all the previously stored exemplars of the word "cat", and thereby determine how 

similar the new utterance was to the stored examples.  

 Port's view of language and phonology is controversial, but it does address why 

invariant phoneme cues have not been identified in the speech signal (e.g. Pisoni, 1997; 

Stevens, 1980) - such invariance may not be required. The question he raises, 'what is 

phonology?', is also a timely one. With advances in neuroimaging technology, human mental 

representations have become accessible for experimental study, and are no longer merely 

abstract theoretical constructs. However, there are two major considerations for Port's theory 

of rich phonology. First, are humans capable of generating and storing such complex spectro-

temporal representations in the first place? Second, even if humans can generate such 

complex representations, why would we choose to do so if a more parsimonious encoding 

format will suffice?  

 To address the first question, Port points to findings from memory research regarding 

'exemplar memory'. He cites in particular a finding by Palmeri et al (1993) in a word 

recognition task. Here, participants were asked to recognise verbally-presented words, where 

the word lists were either read by the same speaker, or up to 20 different speakers. 

Participants' memory performance was poorer when there were 2 different speakers, as 

compared to the just 1 speaker, but importantly, performance did not drop any further even 

when the number of different speakers was increased up to 20. Therefore, listeners were not 

making specific word-speaker associations (which should have caused a proportional drop in 

performance with the number of speakers). Rather participants' appeared to be automatically 

retrieving detail about the speakers' voice along with the word being spoken. This voice 

detail had to be suppressed when there were 2 or more speakers, but not when there was just 

1 speaker. Therefore the uniform drop in performance across all different-speaker conditions 

was taken to reflect this suppression activity, and evidence that speaker voice was 
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automatically encoded along with the spoken word. Other evidence in support of 'rich' 

phonological encoding comes from neuroscience. For example, Pasley et al (2012) and Ding 

& Simon (2012) both recently demonstrated successful reconstruction of the speech temporal 

envelope from intracranial EEG and MEG recordings respectively. This suggests that the 

brain can indeed track the spectro-temporal variation in the acoustic signal with great detail 

and fidelity.  

 However, even if the brain is capable of encoding such fine spectro-temporal detail, 

does it actually do so when representing and storing speech sounds? To answer this question, 

it is helpful to look at infant phonological development. At 6-8 months of age, English-

learning infants are able to discriminate phoneme contrasts (spectro-temporal patterns) that 

are used in English (/ba/-/da/), as well as native-American contrasts that are not used in 

English (/ki/-/qi/). However, by 10-12 months of age, English-learning infants can no longer 

hear the native-American contrast, even though native-American babies of the same age have 

no trouble making this discrimination (Werker & Tees, 1984). Therefore, although younger 

infants initially encode the full spectro-temporal patterns of all speech sounds (native or non-

native), older infants apparently only selectively encode spectral-temporal contrasts that are 

used in their native language. This suggests that while our phonological representations can 

be rich in detail, such detail is only retained in memory when it is required to make 

discriminations in our native language. In other words, our phonological representations are 

indeed rich, but they are also parsimonious. Therefore, phonological development involves 

learning which spectro-temporal features are important and should be elaborated in memory, 

and which features are unimportant and should be ignored. 

 A final point to consider is whether the quality of mental phonological representations 

changes over time. For example, if very young children can only perceive a limited amount 

of spectro-temporal detail, then this would suggest that their mental representations of speech 

sounds would be likewise limited in scope. In this case, children's phonology would comprise 

only rough spectro-temporal 'sketches', rather than possessing the richness of detail envisaged 

by Port. One way to test this is to present children with speech that contains only spectral 

changes (e.g. sine-wave speech), or only amplitude changes (e.g. vocoded speech). In such a 

study, Nittrouer et al (2009) compared the performance of 7-year-old English-speaking 

children with native English-speaking adults, and adults who spoke English only as a second 

language (L2). They presented each group with sine-wave speech, and 4- and 8-channel 

noise-vocoded speech, using 4-word sentences as stimuli. They found that for sine-wave 
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speech, children performed on par with native adults, and performed better than L2 adults. 

However, for both 4- and 8-channel noise-vocoded speech, children could only perform at 

the level of L2 adults, and lagged behind native adults.  These results were taken to indicate 

that children learned to encode spectral changes in speech before they learned to encode 

amplitude-related changes, which may require more protracted development. However, it 

should be noted that in this experiment, only speech intelligibility was tested, not sensitivity 

to rhythm and prosody, which could show a different pattern of development.  

 

9.2.5 IMPLICATIONS FOR  DISORDERS IN LANGUAGE DEVELOPMENT 

 

 This slower development of sensitivity to amplitude-related changes in the speech 

envelope may explain why it is particularly vulnerable in language disorders such as 

developmental dyslexia and specific language impairment (SLI, e.g., Goswami, 2011; 

Corriveau & Goswami, 2009). For example, children with developmental dyslexia show 

specific deficits when asked to detect amplitude-related changes, both in pure tones, as well 

as and in speech syllables (Goswami et al, 2002; Goswami et al, 2011; Huss et al, 2011). 

These difficulties in discriminating amplitude envelope 'rise time' are found in dyslexia 

across many different languages, including Chinese, Dutch, English, Finnish, French, 

Hungarian and Spanish (Goswami et al., 2002; Richardson et al., 2004; Muneaux et al., 2004; 

Hämäläinen et al., 2005; Suranyi et al., 2009; Poelmans et al., 2011).  

 In the context of speech, the amplitude 'rise time' typically refers to the syllable onset, 

and is measured as the time (in ms) taken for the syllable to reach its peak amplitude. When 

the syllable stress pattern of a word is artificially manipulated (e.g. 'DIfficulty' vs 

'diFFIculty'), the stressed version of a given syllable (e.g. 'FFI') typically has a longer rise 

time than its unstressed version (e.g. 'ffi'). This is illustrated in Figure 9.3 (reproduced from 

Leong et al, 2011), where the syllable onset slope is shown in a diagonal dotted red line, and 

the rise time is the horizontal distance covered by this line along the x-axis (time). A longer 

rise time means that the stressed version of the syllable takes a relatively longer time to reach 

its peak amplitude than the unstressed version of the same syllable. In Leong et al (2011), 

dyslexic and non-dyslexic adults were presented with pairs of these stress-manipulated 

words, and had to indicate whether the two words in the pair had the same (e.g. "DIfficulty" 

vs "DIfficulty") or a different (e.g. "DIfficulty" vs "diFFIculty") syllable stress pattern. 

Dyslexics were found to be significantly poorer than their non-dyslexic peers at making this 
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syllable stress discrimination. Moreover, dyslexics' performance on the stress discrimination 

task was significantly predicted by their psychoacoustic sensitivity to amplitude rise time, but 

not by their sensitivity to either intensity or frequency (which also differed acoustically 

between stressed and unstressed syllables). Therefore, although there were multiple acoustic 

cues to syllable stress in the speech stimuli, the dyslexic deficit (in Leong et al, 2001) 

appeared to be associated specifically with the amplitude rise time cue. 

 

Figure 9.3. Amplitude envelope across spectral frequencies for the word "difficulty" 

produced with stress on the first or second syllable. Reproduced from Leong et al (2011). 

 

 

 In the follow-up study presented in this thesis (Chapter 8), a new cohort of adult 

participants was recruited, and dyslexic stress perception (and production) were examined 

with specific reference to the AM patterns in speech. This time, the psychoacoustic profile of 

dyslexic participants indicated that they had no significant problems with amplitude rise time 

discrimination, but instead had significant problems with intensity discrimination (see 

Chapter 8, Section 8.2.2). This was the opposite pattern to that observed for participants in 

the original syllable stress study (Leong et al, 2011). However, across both studies, the 

dyslexic deficit pertained to amplitude (intensity) discrimination, and there were no group 

differences in discriminating other auditory parameters, such as frequency or duration. 

Therefore, even in highly-compensated dyslexic adults (participants were University of 

Cambridge undergraduates), acoustic problems in amplitude discrimination could still be 

detected.  
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 Recall that the amplitude rise time can also be viewed as the upward-going portion of 

the AM cycle (i.e. -π to 0 radians phase). The psychoacoustic 'Dino' test for rise time 

perception used by Goswami and colleagues spans a broad range of rise times, equivalent to 

1.7-33 Hz in AM rate. Therefore, one of the key aims of the dyslexia study in this thesis was 

to try to narrow down the dyslexia deficit to a particular AM tier or tiers (thereby implicating 

speech processing of a particular linguistic unit or units). In Chapter 8, the results of the three 

rhythm perception and production experiments were consistent. Dyslexics repeatedly 

displayed problems with the Syllable and Stress AM tiers, but not with the Phoneme AM tier. 

In the tone-vocoder rhythm perception experiment, dyslexics performed more poorly 

(although not significantly so) when the Syllable AM was combined with another AM tier 

(Stress or Subbeat). In the tapping experiment, dyslexics tapped at a significantly different 

phase only with respect to the Syllable AM tier, not the Stress or Phoneme tier. In the rhythm 

production experiment, dyslexics' syllable timing was disordered. Their distribution of 

Syllable AM peaks with respect to Stress AM phase also showed a different hierarchical 

organisation as compared to non-dyslexics, but their distribution of Phoneme AM peaks with 

respect to Syllable AM phase was normal.   

 In the AMPH and S-AMPH models proposed in this thesis, Stress and Syllable AM 

rates play a crucial role in syllable detection (e.g. identifying vowel nuclei) and prosodic 

stress assignment. Therefore, the observed dyslexic deficit at these slower AM rates is highly 

consistent with their previously documented problems with syllable stress perception (Kitzen, 

2001; Goswami et al, 2010; Leong et al, 2011). According to the temporal sampling 

framework put forward by Goswami (2011), the phonological problem in dyslexia may be 

attributed to a fundamental problem with neural oscillatory phase-locking at slower syllable 

(theta) and stress (delta) rates. Consistent with this suggestion, it has been demonstrated that 

inefficient neural phase locking at the delta rate to sinusoidal amplitude-modulated noise 

indeed characterises individuals with developmental dyslexia (Hamalainen et al., 2012). If 

inefficient neural phase locking to speech AMs at a delta or theta rate (i.e. Stress or Syllable 

AM tiers) is also found (as predicted by the behavioural deficits observed in this thesis), this 

result would provide further support for Goswami's temporal sampling hypothesis. According 

to this explanation, poor neural phase-locking at neural delta and theta rates would result in 

faulty or impoverished representation of Stress and Syllable AM patterns in the speech 

signal. This in turn would lead to deficits in syllable timing and prosodic stress perception, 

producing difficulties with speech segmentation. Over the course of development, the 
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cumulative effects of these syllable timing and speech segmentation problems would result in 

dyslexic children having altered or incomplete phonological representations. 

 

9.2.6 POTENTIAL EDUCATIONAL APPLICATIONS  

 

 The AM-based work in this thesis also points to several possible ways in which 

language development may be supported or remediated. For example, in the nursery rhyme 

production task in Chapter 8 (Section 8.3.4) dyslexic adults were found to struggle with the 

more complex iambic-patterned nursery rhymes, while performing on par with their peers for 

the simpler trochaic-patterned nursery rhymes. This is consistent with previous findings by 

de Bree et al (2006) in which dyslexic children struggled more with the imitation of non-

words with irregular prosodic stress patterns. This suggests that phonological training for 

dyslexic children should focus on more complex, infrequent or irregular metrical patterns, 

such as iambs ('w-S'), in order to strengthen their phonological representations of these more 

difficult metrical patterns. 

 Another possible remediation strategy for children with language disorders could be  

increasing their exposure to child-directed speech. The analysis of child-directed speech in 

Chapter 7 indicated that both nursery rhymes and non-poetic storybook readings possessed a 

tightly-nested hierarchical modulation structure when delivered in a child-directed speaking 

style. The presence of such strong hierarchical patterning between Stress and Syllable AM 

rates in the acoustic signal might be expected to generate equally strong neural hierarchical 

nesting between equivalent delta and theta oscillatory rates. Therefore, if indeed neural 

oscillatory phase-locking at delta and theta rates is impaired in dyslexia, repeated exposure to 

speech stimuli that elicit strong delta-theta phase-locking could train the underlying neural 

oscillatory networks to generate a more robust phase-locking response even to normal 

speech. Practically, this 'neural training' would be no more onerous than reading a storybook 

or nursery rhymes to the dyslexic child in a lively child-directed manner.  

 The difference in modulation structure between child-directed and adult-directed 

speech also has a possible interesting application in the area of artificial speech enhancement. 

If child-directed speech does indeed have beneficial effects on language learning, then the 

modulation statistics and spectro-temporal properties of speech could be artificially enhanced 

so that it is more 'child-directed' in nature. Adults spontaneously alter their speech patterns to 

be more child-directed when they are speaking to children. However, not all adults are 
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equally successful at producing these enhancements. For example, the former Children's 

Laurette, Michael Rosen, is far more skilled and successful at producing prosodically-

enhanced child-directed speech than the average adult. This skill is evidenced by his ability 

to captivate child and adult audiences alike with memorable and enjoyable poetry readings. If 

the modulation statistics of his speech patterns were studied, these could provide an example 

of the 'optimal' child-directed speech template. This template could then be used to enhance 

the 'child-directedness' of other speech samples. Such child-directed speech enhancement 

could be used in a variety of educational settings, for example in the making of children's 

audiobooks, or in computerised phonological training games for children with language 

disorders. A CDS-enhancement hearing aid could even be designed for use by children with 

language disorders, so that any speech they hear is automatically prosodically enhanced in 

'real-time'. Such acoustic enhancement could also be tailored to facilitate speech 

segmentation and to emphasise the important phonological patterns in speech, thereby 

supporting the phonological development of children with language disorders.  

 

9.3 FUTURE RESEARCH QUESTIONS 

 

 Finally, there are several other possible ways in which the current research on AM-

based speech rhythm could be extended.  

 Speech Rhythm Differences Across Languages. The debate about language 'rhythm 

classes' has tended to centre around a fairly narrow definition of rhythm. Typically, 

researchers have compared durational differences at the segmental level. This means that 

rhythm differences arising from other cues (e.g. amplitude, pitch) or combinations of these 

cues, have been ignored. Consequently, no single 'rhythm-metric' method has been wholly 

successful in describing differences in speech rhythm across languages (see Arvaniti, 2009). 

The S-AMPH, alongside other new amplitude-based methods (e.g. Todd, 1994; Arvaniti, 

2012) could shed new light on this debate by revealing cross-language differences in rhythm 

arising from amplitude changes. Also, traditional 'rhythm-metrics' typically focus on only one 

linguistic timescale (i.e. segments), rather than on the relationship between speech 

information at different timescales
38

. The S-AMPH model could reveal any differences in 

modulation pattern across different timescales. For example, in 'stress-timed' languages like 

                                                 
38

 Although Patel (2008) has suggested that a comparison between syllable and stress variability could be 

helpful 
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English, the critical phase relationship determining rhythm may involve Stress and Syllable 

AM tiers. However, for 'syllable-timed' languages, the Syllable and Phoneme AM tiers may 

be more instrumental in determining rhythm instead. The specific AM tier or tiers that 

specify the rhythm patterns of a given language could depend on the phonological unit(s) 

used by that language as the basic unit of rhythm. It is also possible that in fact all human 

languages can be arranged along a continuum as being 'more-or-less stress-timed' (Dauer, 

1983). In this case, the number and configuration of tiers within the AM hierarchy that are 

used to specify rhythm should systematically predict the location of a given language on this 

continuum.  

 Modelling Individual Differences in Rhythm Perception. Previous studies have 

demonstrated a relationship between sensitivity to rhythm and prosody in speech and reading 

achievement (e.g. Goswami et al, 2010, Leong et al, 2011). In this thesis, it is also 

demonstrated that highly-compensated individuals with development dyslexia perceive and 

produce speech rhythm patterns differently from their non-reading-disabled peers (Chapter 

8). It could be interesting to see if the AMPH model can be modified to produce 'deficits' in 

rhythm perception, similar to those observed in dyslexia. This could shed light on the 

possible mechanisms underlying rhythm deficits in these individuals. 

 Speech Rhythm 'Profiling'. The AMPH model(s) could be used to quantify or measure 

speech rhythm differences in the utterances of individuals with speech production problems, 

such as dysarthria. For example, one could see if patients with lesions at basal ganglia, 

cerebellar
39

 or motor lesion sites produce distinctly different speech rhythm 'profiles', based 

on different characteristic changes to the AM hierarchy. One could also generate these speech 

rhythm profiles for different types of expressed emotions, or different speaker accents, for the 

purposes of emotion or speaker recognition. 

 Neural Basis of Rhythm Perception. A clear prediction has been made regarding a 

possible neural mechanism for rhythm perception (e.g. Figure 9.1). Specifically, this involves 

entrainment of hierarchically-nested neuronal oscillations to the AM hierarchy. This 

prediction remains to be tested empirically. Finally, experienced listeners attend selectively 

to information in the speech signal, and their sensitivity to acoustic information has been 

'tuned' with experience. For example, infants gradually learn to 'ignore' non-native phoneme 

contrasts (Werker & Tees, 1984), while becoming increasingly sensitive to native prosodic 

                                                 
39

 The basal ganglia have been associated with 'beat-based' rhythm, while the cerebellum is associated with 

'duration-based' rhythm (Grube et al, 2009; Grahn, 2009). 
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patterns (e.g. Jusczyk et al, 1999). It could be interesting to investigate the neural correlates 

of such neural 'tuning' to speech rhythm patterns during early language development, in 

infants.  

 

9.4 FINAL CONCLUSION 

 

 Overall, both AMPH and S-AMPH models succeeded in the overall aim of providing 

an amplitude-based account of speech rhythm perception. This account was shown to be have 

psychological validity and to possess explanatory power. The AMPH and S-AMPH models 

also represent methodological advancements for speech rhythm measurement. As analytical 

tools for syllable detection and prosodic stress transcription, the models produce an 

acceptable level of accuracy. In practical applications of the AMPH models to experimental 

research, the models were found to be useful in uncovering subtle differences in temporal 

structure, and in highlighting the psychological variables associated with these differences.   

 Clearly, there are exciting avenues for future research into AM-based speech rhythm. 

It is hoped that the work in this thesis will draw attention to the amplitude envelope as a 

potentially rich source of information about speech rhythm patterns, and as a worthy subject 

for further empirical study. 
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Maturation of the Auditory Cortex and Effects on Speech Perception 

 

 Human newborns enter the world with a relatively mature cochlea and brainstem. By 

the 29th fetal week (third trimester of pregnancy), click-evoked auditory brainstem potentials 

are already present, indicating that information is being conducted through brainstem 

pathways (Ponton, Moore & Eggermont, 1996). By contrast, the auditory cortex is immature 

at birth and undergoes a protracted period of postnatal development. To investigate the 

developmental changes occurring in the human auditory cortex at a histological (cell and 

tissue) level, Moore (2002) used immunohistochemical (antibody) staining of axonal 

filaments in postmortem brain tissue. These filaments are produced by neuronal axons at the 

time when they begin to function, and their production immediately preceeds myelination and 

rapid conduction. Hence, the immonolabelling of such axonal filaments marks the onset of 

function in a neuronal system. Based on the timing and pattern of expression of these 

neurofilaments, Moore (2002) reported that the maturation of the human auditory cortex 

appeared to occur in three developmental stages, each characterised by a different axonal 

system coming 'online'. These three periods are the perinatal period (third trimester to 4 

months), the early childhood period (4.5 months to 5 years), and the late childhood period (5 

years to 12 years). 

 Perinatal period (third trimester to 4 months). During this period, mature axons are 

only present in the most superficial layer of the cortex, the marginal layer. In this superficial 

layer, axons run parallel to the cortical surface for long distances, contacting the apical 

dendrite tips of  neurons from deeper layers of the cortex. It is thought that marginal layer 

neurons drive the activity of these deeper cells, promoting their structural and functional 

maturation (Marin-Padilla & Marin-Padilla, 1982). However, the vast majority of the 

auditory cortex remains immature at this stage. Consequently, the auditory discrimination 

abilities demonstrated by infants under 4 months of age most likely derive from the analytical 

abilities of their mature cochlea and brainstem. And these abilities are remarkable. Newborn 

infants already show memory and recognition for voices (DeCasper & Fifer, 1980) and 

stories (DeCasper & Spence, 1986), and are able to differentiate languages with different 

rhythmic properties (Nazzi et al, 1998). At 1 month of age, infants are not only capable of 

making fine phonetic discriminations of voice onset time (VOT), but show categorical 

perception of VOT in a manner similar to adults (Eimas et al, 1971). By 2 months of age, 
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infants show sensitivity to syllable structure (Bertoncini & Mehler, 1981), and by 4 months of 

age, the neural mismatch responses of German and French infants already begin to reflect the 

prosodic patterns of their native language (Friederici et al, 2007). In terms of measurable 

brain responses during this stage, axons projecting from the inferior colliculus (brainstem) to 

the medial geniculate (thalamus) may contribute to the generation of the middle latency 

cortical potentials like the Po-Na complex, which is measurable at the time of birth (Moore & 

Linthicum, 2007). Longer-latency evoked potentials like the N2 and MMN are also 

measurable in infants at this age (e.g. Friederici et al, 2007). These slower components are 

likely to be generated by the marginal layer afferents in the cortex which are thin and only 

lightly myelinated.   

 Early childhood period (4.5 months to 5 years). From around 4.5 months to 1 year, 

thalamocortical afferents begin to develop. This system of axons carries input from the lower 

levels of the auditory system (ear and brainstem) to deep layers of the auditory cortex (layers 

4,5 & 6). This network of afferents becomes progressively denser up to around 5 years of 

age. Commensurate with this, the Pa (peak latency 25-30 ms) and P1 (80-100ms) components 

become increasingly detectable in early childhood years, with the latency of the P1 gradually 

shortening over time. These components appear to be generated by activity in the deeper 

layers of the auditory cortex (Moore & Linthicum, 2007). At around this time, when deep 

thalamocortical afferents are beginning to develop, infants begin to show specialisation or 

'tuning' for sound patterns in their native language. For example, 9-month-old English-

learning infants begin to listen longer to trochaic prosodic foot patterns that are most common 

in English (Jusczyk et al, 1993). While younger English infants readily discriminate foreign 

phoneme contrasts such as the native-American /ki/-/qi/, by 10 months of age, English infants 

no longer make this discrimination (Werker & Tees, 1984). Hence, the thalamic input to the 

deeper cortical layers appears to play a role in 'tuning' the auditory system to respond 

preferentially to relevant (e.g. native) speech sounds, and to ignore irrelevant (e.g. foreign) 

speech sounds.  

 Late childhood period (5 to 12 years). At around 5 years of age, mature axons begin 

to appear in superficial cortical layers 2 & 3, reaching an adult-like density by 11-12 years. 

These axons represent cortico-cortical connections such as commisural axons that 

interconnect the cerebral hemispheres, and association fibres that connect different areas of 

the cortex. Coincident with the maturation of these upper superficial cortical layers, the N1 

wave begins to appear by around age 6 to 8 (Ponton & Eggermont, 2001). During this last 
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stage of development, the ability to perceive speech in noise improves markedly (Elliott, 

1979). Children are also become better able to maintain speech perception in conditions of 

binaural switching, interruption, filtering or spectral degradation (Marshall et al, 1979). 

Hence, maturation of layers 2 & 3 of the auditory cortex appear to be associated with robust 

coding of speech information in adverse conditions. 

 However, this account of the relatively late maturation of the auditory cortex is not 

universally accepted. For example, Dehaene-Lambert et al (2002, 2006) and colleagues 

(Leroy et al, 2011) argue instead for the early maturation of linguistic pathways, pointing to 

fMRI evidence that even 3-month-old infants show activation in the temporal lobes, inferior 

and dorsolateral frontal areas when engaged in a speech task. However, these neuroimaging 

results should be interpreted with caution because the presence of BOLD activation in a brain 

area does not necessarily imply an active role in online speech processing. Rather, according 

to Moore's account, neurons in the auditory cortex may simply be passively receiving 

information from subcortical areas in order to stimulate their development. Moreover, a 

closer examination of fMRI results indicates that the pattern of activation in infants is not 

fully adult-like in the first few months of life.  For example, in the Dehaene-Lambert et al 

(2002) study, 3-month-old infants were played 20s spoken sentences either forward or 

backwards. Both types of sentences elicited a broad pattern of activation over the temporal 

lobes, with greater activation over the left than right temporal lobe. However, when the 

activation pattern for forward speech was compared to backward speech, infants showed 

greater activation in the left angular gyrus (parietal lobe), but not in the temporal lobe for 

forward as compared to backwards speech. In contrast, adults showed greater activation for 

forward speech over the left superior temporal sulcus (temporal lobe). The parietal activation 

in infants is consistent with a memory retrieval explanation, since a similar region is activated 

in adults when performing memory retrieval of words (Shallice et al, 1994). Hence, at 3 

months of age, infants appeared to differentiate forwards and backwards speech on the basis 

of stimulus familiarity (engaging the parietal cortex), rather than on the basis of linguistic 

potential (which should engage the auditory cortex).  

 The infant fMRI evidence thus indicates that while the auditory cortex does indeed 

respond to auditory input from as early as 3 months of age, its activation pattern does not 

differ in response to speech with an intact or reversed temporal structure. This is consistent 

with the explanation of an immature auditory cortex that is receiving input, but whose 

response is as yet 'un-tuned' to linguistically-relevant or meaningful sounds. As such, it is 
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debatable whether or not the auditory cortices play any active role in processing speech at 

this early stage. To shed light on this issue, it would be interesting to conduct a comparative 

fMRI study of infants younger and older than 4.5 months of age, to look at the patterns of 

neural activation associated with language-specific 'tuning' (eg. loss of non-native categorical 

phoneme discrimination). According to the late development hypothesis, patterns of auditory 

cortical activation in younger infants should show no difference for native and non-native 

phoneme contrasts. However, in older infants, native phoneme contrasts should elicit stronger 

activation over temporal cortices than non-native phoneme contrasts. 
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Introduction: The perception of syllable stress has not been widely studied in developmen-
tal dyslexia, despite strong evidence for auditory rhythmic perceptual difficulties. Here we
investigate the hypothesis that perception of sound rise time is related to the perception of
syllable stress in adults with developmental dyslexia.
Methods: A same-different stress perception task was devised and delivered to a sample of
40 adults in two formats, one using pairs of identical 4-syllable words and one using pairs
of two different 4-syllable words. Auditory perception of rise time, frequency and intensity,
and phonological awareness, phonological memory and reading were also measured.
Results: We show that adults with dyslexia performed significantly more poorly in both
versions of the stress perception task. Individual differences in the perception of rise time
were linked to the accuracy of performance.
Conclusions: To our knowledge this is the first direct demonstration of syllable stress per-
ception deficits in dyslexia. The accurate perception of intonational patterning and rhythm
may be critical for the development of the phonological lexicon and consequently for the
development of literacy. Even high-functioning compensated adults with dyslexia show
impairments in speech processing.

� 2010 Elsevier Inc. All rights reserved.

Introduction

Developmental dyslexia is a neurodevelopmental con-
dition found across languages, for which the cognitive hall-
mark is impaired phonological processing (Snowling,
2000; Ziegler & Goswami, 2005). Evidence that this hall-
mark ‘‘phonological deficit” is related to impaired basic
auditory processing has been accumulating during the last
decade, in studies of both alphabetic and non-alphabetic
languages. The auditory parameter most consistently
found to be impaired has been perception of the amplitude
envelope onset (rise time), or its correlate, amplitude mod-
ulation depth (Corriveau, Pasquini, & Goswami, 2007;
Goswami, Fosker, et al., 2010; Goswami, Gerson, & Astruc,

2009; Goswami et al., 2002; Goswami, Wang, et al., 2010;
Hämäläinen, Leppänen, Torppa, Muller, & Lyytinen, 2005;
Hämäläinen, Salminen, & Leppänen, in press; Hämäläinen
et al., 2009; Lorenzi, Dumont, & Fullgrabe, 2000; Muneaux,
Ziegler, Truc, Thomson, & Goswami, 2004; Pasquini, Corri-
veau, & Goswami, 2007; Richardson, Thomson, Scott, &
Goswami, 2004; Rocheron, Lorenzi, Fullgrabe, & Dumont,
2002; Suranyi et al., 2009; Thomson, Fryer, Maltby, &
Goswami, 2006; Thomson & Goswami, 2008). Behaviour-
ally, rise time is most closely associated with the percep-
tual experience of speech rhythm and stress (Hoequist,
1983; Morton, Marcus, & Frankish, 1976). However, to
date, there has been no investigation of the possible rela-
tionship between basic auditory processing of rise time
and the perception of syllable stress in spoken words in
dyslexia. A clear prediction of the ‘‘rise time” theory of
developmental dyslexia (Goswami et al., 2002) is that the
perception of syllable stress should be impaired in individ-
uals with dyslexia, and that individual differences in rise
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time perception should predict the severity of any impair-
ment in perceiving syllable stress.

Despite the lack of direct evidence for a stress percep-
tion impairment in dyslexia, recent studies using reitera-
tive speech tasks are consistent with the prediction that
individuals with developmental dyslexia should be im-
paired in perceiving syllable stress. Regarding adults with
developmental dyslexia, Kitzen (2001) developed a reitera-
tive speech task in which each syllable in a word was con-
verted into the same syllable (here DEE). This enabled
distinctive phonetic information in words and phrases to
be removed while retaining the stress and rhythm patterns
of the originals. Kitzen converted film and story titles into
‘‘DeeDees”, so that (for example) ‘‘Casablanca” became
DEEdeeDEEdee (STRONG weak STRONG weak, or SWSW).
Adolescent participants with dyslexia heard a tape-re-
corded DeeDee sequence while viewing three alternative
(written) choices, for example ‘‘Casablanca”, ‘‘Omega Man”
and ‘‘The Godfather”. Kitzen found that her participants
with dyslexia were significantly poorer in this choice task
than age-matched controls. She also reported that perfor-
mance in the DeeDee measure was significantly associated
with syllable and phoneme segmentation skills, and with
word reading abilities and reading comprehension. In logis-
tic regression analyses carried out to predict group mem-
bership (dyslexic versus control), the DeeDee measure
was a highly significant predictor of group status (along
with syllable segmentation and rapid naming measures).
All three measures together predicted group membership
with 97% accuracy (phoneme segmentation was not a sig-
nificant predictor). However, one drawback with this study
was the use of written response choices for participants
who had difficulties in processing written language.

Goswami et al. (2009) developed two DeeDee tasks
suitable for children with dyslexia, which avoided reading
demands (see also Whalley & Hansen, 2006). In their tasks,
children saw a picture of a ‘‘famous name” familiar to Brit-
ish participants (such as the English footballer David Beck-
ham) or pictures corresponding to familiar film and book
titles (such as Harry Potter). Familiarity with the pictures
was assessed in a pretest. During the experimental ses-
sions, the children were asked to select which of two ‘‘Dee-
Dee” phrases that they heard matched the picture. For
example, the correct match for ‘‘Harry Potter” was DEEdee-
DEEdee (SWSW). Goswami et al. reported that the children
with dyslexia (who were aged on average 12 years) per-
formed significantly more poorly than age-matched con-
trols in both the ‘Film and Book Titles’ and ‘Famous
Names’ DeeDee tasks. Performance in the DeeDee tasks
was also a significant predictor of reading development
in the sample, for example individual differences in the ‘Fa-
mous Names’ task accounted for 25% of unique variance in
reading accuracy after controlling for age and IQ. DeeDee
perception predicted reading even when phonological
awareness (performance in a rhyme oddity task) was addi-
tionally controlled (still accounting for 16% of unique var-
iance, p < .001). Finally, individual differences in measures
of the auditory perception of rise time predicted unique
variance in the reiterative speech task.

One drawback of reiterative speech tasks is that they re-
quire participants to derive an abstract representation of

the stress patterning of a particular utterance rather than
to perceive the stress patterns in the utterance directly.
Studies of direct stress perception in non-dyslexic adults
have used a variety of experimental paradigms, including
visual and auditory lexical decision, shadowing tasks,
speech gating tasks, and word recognition of mis-stressed
words (see Cutler (2005), for a recent review). As discussed
by Cutler (2005), prior information about stress patterning
does not seem to facilitate lexical access in English,
although in some studies stress information helps to re-
solve lexical competition. For example, Cooper, Cutler,
and Wales (2002) showed using a fragment priming task
that information about syllable stress helped listeners to
assign initial syllables to source words such as admiral ver-
sus admiration. The adults heard sentences like ‘‘The
speech therapist said.” and then had to make a lexical deci-
sion about the target words (e.g., admiral/admiration). The
auditory primes were fragments of complete words pro-
nounced with either first syllable stress (‘‘ADmir”) or third
syllable stress (‘‘admir” from admiration). Cooper et al. re-
ported that a fragment like ‘‘ADmir” activated admiral
more than admiration, while a fragment like ‘‘admir” acti-
vated admiration more than admiral. Their conclusion was
that English adults do make use of suprasegmental infor-
mation in recognising spoken words. Slowiaczek (1990)
asked participants to listen to spoken words that were
mixed with white noise and were presented with either
correct stress (e.g., SPECulative) or incorrect stress (specU-
lative). Participants had to write down what they heard
and were credited for accurate word recognition. Slow-
iaczek found no effects of mis-stressing in this recognition
task. However, when she asked participants to shadow
what they heard in a subsequent experiment, there was
an effect of mis-stressing on response speed. Participants
were slower to produce the mis-stressed words, suggesting
that lexical stress is coded as part of the phonological
representation.

As the cognitive difficulty in developmental dyslexia lies
in the accurate neural representation of the phonological
information in words, stress perception may be expected
to play an important role in the development of well-spec-
ified phonological representations. English is a free-
stressed language, as prominence may occur on different
syllables, falling at different positions in different words
(as in ‘‘orNATE” for the isolated word versus ‘‘ORnate BAL-
cony” for continuous speech). Studies of early phonological
development in English suggest that infants and very young
children adopt a primarily lexical strategy to stress place-
ment, that is they learn stress as part of the phonological
representation of a particular word (e.g., Klein, 1984). How-
ever, many English words used with infants and young chil-
dren follow a strong–weak pattern (mummy, daddy, baby,
doggie), and so it is possible that template learning plays a
role in the development of knowledge about stress. In gen-
eral, strong syllables are louder and longer than weak sylla-
bles, and have a higher pitch (frequency). Jusczyk, Houston,
and Newsome (1999) reported that infants could segment
words with strong–weak patterns by 7½ months of age,
but appeared to mis-segment words following a weak–
strong pattern. For example, if the infants heard a sentence
such as ‘‘her guitar is too fancy”, they segmented ‘‘taris” as a
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plausible word (treating ‘‘taris” rather than ‘‘guitar” as
familiar during the dishabituation test). By 10½ months
of age, infants did not make these mistakes. Sensitivity to
the predominant stress patterns of English words is clearly
important for segmenting words and syllables from the
speech stream, and therefore for phonological representa-
tion (see also Echols, 1996; Mattys & Juscyk, 2001).

Recent theories of developmental phonology have also
suggested an important role for prosodic sensitivity in
explaining phonological development (Gerken, 1994;
Pierrehumbert, 2003; Vihman & Croft, 2007). For example,
Pierrehumbert (2003) argued for early-acquired ‘‘prosodic
structures” as the basis for language acquisition, proposing
a model based on the acquisition of complex language-spe-
cific exemplars from the input that were stored in rich
phonetic and prosodic detail (see also Port, 2007). She ar-
gued that phonetic perception is dependent on the pro-
sodic context. Indeed, stress perception studies with both
children and adults have suggested that target phonemes
are detected more efficiently when they are in stressed syl-
lables (e.g., Mehta & Cutler, 1988; Wood & Terrell, 1998).
Therefore, current evidence suggests that stress is an inte-
gral part of the phonological representations of English
words developed by infants, and that phonological devel-
opment is characterised by an inter-dependency of pho-
netic and prosodic information.

It thus seems plausible to propose that the phonological
difficulties experienced by children and adults with devel-
opmental dyslexia must involve reduced sensitivity to
stress and intonational patterning as well as reduced sen-
sitivity to phonological units like syllables, onsets, rimes
and phonemes. As noted, the auditory correlates of stress
are most usually defined as involving amplitude, duration
and frequency. Classical theories (e.g., Fry, 1954) accorded
fundamental frequency the key role in stress perception,
with duration and intensity (amplitude) playing secondary
roles. More recent investigations using natural speech have
shown that amplitude and duration cues play a stronger
role in prosodic prominence than fundamental frequency
(Choi, Hasegawa-Johnson, & Cole, 2005; Greenberg, 1999;
Kochanski, Grabe, Coleman, & Rosner, 2005). For example,
Greenberg (1999) described an automatic prosodic algo-
rithm developed to label stressed and unstressed syllables
in a corpus of spontaneous speech. The algorithm de-
pended on three separate parameters of the acoustic sig-
nal, duration, amplitude and fundamental frequency. In
contrast to classic accounts, Greenberg reported ‘‘funda-
mental frequency turns out to be relatively unimportant
for distinguishing between the presence and absence of
prosodic prominence. . . the results indicate that the prod-
uct of amplitude and duration . . . yields the performance
closest to . . . linguistic transcribers” (p. 172). Similar con-
clusions were reached by Kochanski et al. (2005) in an
investigation of a large corpus of natural speech covering
7 English dialects.

Greenberg (2006) has explicitly linked changes in rise
time to prosodic prominence by proposing a theory of
how the ‘‘energy arc” of speech (the linguistic manifesta-
tion of the energy arc is the syllable) is produced by man-
ner of articulation. By this account, the energy contour of
the speech signal is an arc rising to a peak in the nucleus

of each syllable and then descending. Rise time (the rate
of change in intensity or signal energy as the nucleus of
the syllable is produced by the articulators) should be par-
ticularly critical for stress perception. The specific way in
which the arc ascends to the peak depends on whether
the syllable is stressed (here more energy is produced)
and the phonetic composition of the syllable onset – with
more sonorous onsets, speakers take longer to reach the
peak. Prosody thus affects both the height and length of
the energy contour, and so the amplitude envelope of
speech reflects the prosodic properties of speech.

Loudness (amplitude) perception per se is not usually
impaired in studies of auditory processing in developmen-
tal dyslexia. Rather, perception of the rate of onset of
changes in amplitude (rise time) is impaired. For example,
the different cohorts of children with developmental dys-
lexia tested by Richardson et al. (2004), Thomson and
Goswami (2008) and Goswami et al. (2009) did not exhibit
significantly raised auditory thresholds for amplitude com-
pared to age-matched controls in two forms of a two-inter-
val forced choice (2IFC) task. In one version of this intensity
threshold task, the children were asked to judge which of
two sounds A and B was softer (Richardson et al., 2004).
In the second version, the children heard two sequences
of five sounds (AAAAA versus ABABA), and had to detect
which sequence varied in intensity (Goswami et al.,
2009; Thomson & Goswami, 2008). Group thresholds for
intensity discrimination were statistically equivalent for
children with dyslexia and age-matched controls in all
three studies. Nevertheless, individual differences in the
ABABA intensity discrimination task were predictive of
performance in the ‘‘Film and Book Titles” reiterative
speech task, an indirect measure of sensitivity to syllable
stress, accounting for 18% of unique variance after control-
ling for age and IQ (Goswami et al., 2009). Similarly, in the
Thomson and Goswami (2008) study, intensity discrimina-
tion was significantly correlated with performance in a
Tempi discrimination task even when non-verbal IQ was
controlled (the Tempi task asked children to judge which
of two cartoon bears playing trumpets were producing
notes at a slower pulse rate, r = .39, p < .01). Therefore, if
outcome measures involve an element of periodicity, as
in the DeeDee task and in Tempi detection, intensity dis-
crimination may be a significant predictor of individual dif-
ferences in addition to rise time. The relationship of
intensity discrimination to perceiving syllable stress pat-
terns in multi-syllabic words remains to be tested
(although see Foxton, Riviere & Barone, 2010 for an
audio-visual stress recognition task in which amplitude
perception did play a role in detecting visual prosody).

These relationships between simple intensity discrimi-
nation and periodicity are consistent with a more recent
study of developmental dyslexia using a musical metrical
perception task based on simple tunes comprised of strong
and weak ‘‘beats” (Huss, Verney, Fosker, Fegan, & Gosw-
ami, 2010). In this musical study, children with dyslexia
aged 10 years and control children were asked to judge
whether two short tunes were the same or different in
metrical structure. The tunes varied in metrical complexity
(e.g., a 6-note tune in duplex time with takt on the first
note, versus a 15-note tune in 4/4 time with takt on the
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second note). Huss et al. found that the children with dys-
lexia were impaired in perceiving metrical similarity irre-
spective of the metrical complexity of the different tunes.
The severity of the children’s metrical perceptual difficul-
ties was uniquely predicted by performance in only two
of the basic auditory processing tasks that were adminis-
tered, rise time discrimination and intensity discrimina-
tion. Pitch and duration thresholds did not predict
unique variance in the metrical perception task in block-
entry multiple regression equations, despite the fact that
metrical dis-similarity depended on inserting longer dura-
tions between adjacent musical notes. As metrical struc-
ture is a focus of interest in linguistic studies of syllable
stress, with metrical structure accorded an important
organisational role in determining syllable, word and clau-
sal boundaries, the difficulties of individuals with dyslexia
in metrical perception are again consistent with the diffi-
culty hypothesised here in perceiving syllable stress in
dyslexia. In fact, metrical perception accounted for 42% of
unique variance in reading in the musical metre study,
making it a stronger predictor of reading development in
this sample of children than phonological awareness.

Accordingly, we assume here that very basic auditory
processes are used in perceiving metrical structure in both
music and language, and that individual differences in
these basic auditory processes affect individual differences
in the extraction of periodic structure and accordingly the
perception of syllable stress in speech. To test this hypoth-
esis, we measured basic auditory processing in a sample of
adults with and without developmental dyslexia, and we
also measured stress perception in a same-different task
based on 4-syllable words. From our analysis of over
2500 4-syllable words drawn from the CELEX database,
we found that 4-syllable words in English most commonly
receive primary stress on the second syllable. Forty-four
per cent of words (like maternity and ridiculous) conform
to this typical stress template, which can be denoted as
‘0200’. The remainder of words either received primary
stress on the first syllable (24%), as in difficulty and military
(2000 stress template), or on the third syllable (28%), as in
comprehensive and interaction. These words also had sec-
ondary stress on the first syllable (1020 stress template).

In the current study, we used only words with first or
second syllable stress, that is, 2000 or 0200 template
words. We recorded a female British speaker saying tokens
of each type of word (2000 or 0200 template) with either
correctly or incorrectly placed stress. For example, two to-
kens of the word maternity were recorded, one with cor-
rectly placed stress as in maTERnity (WSWW) and the
other with incorrectly placed stress as in MAternity
(SWWW). We then paired these tokens in all four possible
ways (SWWW–SWWW, WSWW–WSWW, SWWW–
WSWW, WSWW–SWWW). Participants were asked to
judge whether the two tokens in the pair contained the
‘‘same” or ‘‘different” stress patterns. We also varied
whether the spoken token was the same word in each pair
(as in maternity–maternity, Experiment 1, thereby keeping
segmental phonology constant), or was two different
words with matching syllable stress templates (as in
maternity–ridiculous, Experiment 2, thereby conceptually
more similar to the DeeDee task, in that abstract stress

templates must be compared to make a judgement). We
were interested to see whether participants with dyslexia
would find it more difficult to make judgements about
shared syllable stress in each experiment. Note that in both
experiments, stress pattern similarity can nevertheless be
judged ‘‘on-line” using the acoustic information in the
heard tokens, without recourse to the mental lexicon.

Experiment 1

Method

Participants
Twenty adults with developmental dyslexia (11 male;

mean age 25.3 years, range 17.5 years – 41.8 years) and
twenty adults without dyslexia (7 male; mean age
26.3 years, range 18.1 years – 38.5 years) participated in
the study. Eighteen of the adults with dyslexia had a formal
statement of developmental dyslexia, the remaining two
participants showed severe literacy and phonological defi-
cits according to our own test battery which was adminis-
tered to all participants. As phonological deficits were part
of the inclusion criteria for the study, it is possible that par-
ticipants whose difficulties were visual and not phonolog-
ical were excluded from the sample. All participants had no
diagnosed additional learning difficulties (e.g. dyspraxia,
ADHD, autistic spectrum disorder, speech and language
impairments) and spoke English as a first language. Partic-
ipant details are shown in Table 1. All participants took
part in both Experiments 1 and 2 on separate days, with
Experiment 1 being performed first.

Tasks
Standardised ability tests. All participants were given 2 sub-
scales of the Wechsler Abbreviated Scale of Intelligence
(WASI; Wechsler, 1999), a non-verbal subscale (Block De-
sign) and a verbal subscale (Vocabulary). Literacy skills
were assessed using the untimed Wide Range Achievement
Test (Reading and Spelling scales, WRAT-III, Wilkinson,
1993). A measure of short-term memory, the Weschler
Adult Intelligence Scale-Revised forward digit span subtest
was also administered (WAIS-R; Weschler, 1998).

Table 1
Participant details.

Group Dyslexic Controls F(1, 38)

Chronological age (years) 25.3 26.3 .32
(sd) (5.6) (5.2)
WRAT reading standard score 102.5 114.7 23.44***

(sd) (10.0) (5.3)
WRAT spelling standard score 97.8 115.6 38.21***

(sd) (11.3) (6.2)
WASI vocabulary subscale T score

(mean = 50)
63.1 64.7 .64

(sd) (6.3) (5.9)
WASI block design subscale T

score (mean = 50)
59.0 61.0 .85

(sd) (7.4) (6.3)
WAIS-R digit span subscale score

(out of 16)
10.5 12.2 5.28*

(sd) (2.6) (2.0)

* p < .05.
*** p < .001.
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Phonological awareness measures.
i. Spoonerisms. This task was drawn from the Phono-

logical Assessment Battery (PhAB; Fredrickson, Frith,
& Reason, 1997). Participants heard 10 pairs of
words presented orally by the experimenter. Partic-
ipants were asked to swap the onset phonemes of
the pair of words (e.g. for ‘‘sad cat”; subject
responded ‘‘cad sat”). Scores on this measure were
out of a possible 20 points.

ii. RAN (Rapid Automatized Naming). Two versions of an
object RAN task designed originally for children
were administered, one based on pictures of objects
whose names resided in dense phonological neigh-
bourhoods (RAN Dense: Cat, Shell, Knob, Thumb,
Zip), and one based on pictures of objects whose
names resided in sparse phonological neighbour-
hoods (RAN Sparse: Web, Dog, Fish, Cup, Book). Par-
ticipants were shown a sheet of paper with the
same pictures repeated 50 times. In each case, they
were asked to produce the names as quickly and
accurately as possible. Performance was timed, and
the two tasks were combined to give an average
RAN score in seconds.

Psychoacoustic tasks. The psychoacoustic stimuli were pre-
sented binaurally through headphones at 74 dB SPL. The
auditory tasks were presented using an adaptive staircase
procedure (Levitt, 1971) with a combined 2-up 1-down
and 3-up 1-down procedure; after 2 reversals, the 2-up
1-down staircase procedure changes into 3-up 1-down.
The step size halves after the 4th and 6th reversal. A test
run typically terminates after 8 response reversals or alter-
natively after the maximum possible 40 trials. Four atten-
tion trials were randomly presented during each test run,
using the maximum contrast of the respective stimuli in
each auditory task. The threshold score achieved was cal-
culated using the mean of the last four reversals.

i. Amplitude Envelope Onset (Rise Time) Task (1 Rise).
This was a rise time discrimination task in AXB for-
mat. Three 800 ms tones were presented on each
trial, with 500 ms ISIs. Two (standard) tones had a
15 ms linear rise time envelope, 735 ms steady state,
and a 50 ms linear fall time. The third tone varied
the linear onset rise time logarithmically with the
longest rise time being 300 ms. Participants were
introduced to three cartoon dinosaurs. It was
explained that each dinosaur would make a sound
and that the task was to decide which dinosaur’s
sound was different from the other two and had a
softer rising sound (longer rise time, this was either
sound A or B, never sound X). As an integral part of
the software programme feedback was given after
every trial on the accuracy of performance. Sche-
matic depiction of the stimuli can be found in Rich-
ardson et al. (2004).

ii. Frequency task. This was a frequency discrimination
task also delivered in an AXB format. The standard
was a pure tone with a frequency of 500 Hz pre-
sented at 74 dB SPL, which had a duration of

200 ms. The maximum pitch difference between
the stimuli presented in this task was 60 Hz. Partic-
ipants were introduced to three cartoon elephants. It
was explained that each elephant would make a
sound and that the task was to decide which ele-
phant’s sound was higher.

iii. Intensity task. This was an intensity discrimination
task delivered in a 2IFC format. The standard was a
pure tone with a frequency of 500 Hz presented at
74 dB SPL, which had a duration of 200 ms. The
intensity of the second tone ranged from 54 to
74 dB SPL. Participants were introduced to two car-
toon mice. It was explained that each would make
a sound, and the task was to decide which sound
was softer. Participant’s performance on phonologi-
cal awareness and psychoacoustic tasks are shown
in Table 2.

Syllable stress task. This task was based on 20 4-syllable
words with lexical templates that had first syllable stress
(2000, such as caterpillar and difficulty) and 20 4-syllable
words with lexical templates that had second syllable
stress (0200, such as maternity and ridiculous). The words
were selected from an initial list of more than 2500 4-syl-
lable words with first and second syllable-stress pooled
from two linguistics databases (MRC Psycholinguistic
Database and CELEX). The words were selected on the basis
of syllable structure (no consonant clusters in the first two
syllables), spoken and written frequency, and overall
familiarity. Words also did not have alternative pronuncia-
tions. The full list of stimuli is presented as Appendix A.
The words were divided into two lists of 20 words each
(each list comprising 10 words with 2000 lexical templates
and 10 words with 0200 lexical templates). Participants re-
ceived one word list in Experiment 1 and the other in
Experiment 2, which were given on separate days, with or-
der of presentation of the word lists counterbalanced
across participants. The two lists, and the two sets of lexi-
cal templates (2000, 0200), were matched as closely as
possible for spoken and written frequencies. Mean values
for 2000 templates were Cobuild spoken frequency 21.7

Table 2
Group performance in the phonological and auditory tasks.

Group Dyslexic Controls F(1, 36)

Spoonerismsa 15.2 17.8 7.70b,**

(sd) (3.2) (2.3)
RAN time in seconds 35.2 30.3 11.84b,**

(sd) (4.5) (4.0)

Auditory threshold
1 Rise in ms 63.0 40.3 11.50**

(sd) (28.0) (5.5)
Frequency in Hz 12.5 9.1 5.20*

(sd) (5.5) (3.5)
Intensity in dB 2.1 1.9 c.80
(sd) (0.9) (0.4)

a Score out of 20.
b Degrees of freedom are (1, 34).
c Degrees of freedom are (1, 32).
* p < .05.

** p < .01.
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(sd 22) and written frequency 288.6 (sd 294.2). Mean val-
ues for 0200 templates were Cobuild spoken frequency
15.5 (sd 30) and written frequency 224.3 (sd 315.2). Nei-
ther difference was statistically significant, F(1, 38) for spo-
ken frequency = 0.44, F(1, 38) for written frequency = 0.55.

All items were produced naturally by a native female
speaker of British English and recorded for computerised
presentation using Audacity and Praat software. Two spo-
ken tokens were recorded for each word. In one token,
the speaker emphasised only the first syllable of the word
(producing a SWWW stress pattern). In the other token,
the speaker emphasised only the second syllable of the
word (producing a WSWW stress pattern). This resulted
in a total of 80 spoken tokens from 40 words. Word pairs
were then created for each trial by combining the two spo-
ken tokens in all four possible ways. The recorded tokens
were analysed for mean intensity, duration, amplitude rise
time and F0. Mean values for unstressed or stressed first
syllables (such as ma or MA in maTERnity and MAternity
respectively) and stressed or unstressed second syllables
(such as TER or ter in maTERnity and MAternity respec-
tively) are shown in Table 3. The values shown confirm
that the acoustic parameters differed consistently between
stressed and unstressed syllables across different words on
a paired samples t-test. On average, stressed syllables were
higher in intensity and pitch, and had longer durations and
slower rise times than unstressed syllables. These acoustic
differences are illustrated in Fig. 1, which shows a 3D plot
of the amplitude envelopes for the word pair DIfficulty and
diFFIculty. To create the figure, sound stimuli were first
bandpass filtered into 12 logarithmically-spaced channels
spanning a frequency range from 100 to 4000 Hz. Each fre-
quency channel was then demodulated individually to ex-

tract its amplitude envelope. The figure plots time on the x-
axis, frequency on the y-axis, and amplitude on the z-axis.
Marked with arrows on the plot are duration, onset rise
and intensity changes for stressed and unstressed versions
of the syllable ‘ffi’. Differences in the frequency profile (cir-
cled) are also apparent as the stressed ‘FFI’ shows larger
amplitudes in mid-frequency channels than the unstressed
‘ffi’.

During task presentation, participants simply heard a
word pair where two word tokens were presented one
after the other. Participants were told to make same-differ-
ent judgments about the position of syllable stress in the
pair (such as MIlitary – miLItary [different] or MIlitary –
MIlitary [same]). There was a 500 ms interval between
the words in a pair, and a 2000 ms interval between trials
after a response was given. Participants responded by
pressing right or left buttons on the keyboard. The side of
the same/different buttons was randomised across partici-
pants. Participants were told to respond as quickly and
accurately as possible after they saw a question mark ap-
pear on the screen, which appeared at the end of the sec-
ond word. Reaction time was recorded as the time from
the question mark appearing to the participant’s response
(correctly-answered trials only). Feedback on the correct-
ness of the response was provided on each trial by showing
either a ‘happy’ smiley cartoon icon (correct response), or a
‘pirate’ cartoon icon (incorrect response). Apart from the ‘?’
prompt and feedback icons, the computer screen remained
blank whenever auditory stimuli were being presented.
Prior to starting the experiment, participants received four
practice trials. Note that participants were instructed to
judge whether the position of stress was on the same or
different syllables, not whether the word tokens were cor-
rectly or incorrectly pronounced. Participants did not re-
port any difficulty in understanding what judgement was
required.

There were four possible types of word pairs which dif-
fered in stress position, SWWW–SWWW, WSWW–
WSWW, both requiring ‘‘same” judgements, and
SWWW–WSWW, WSWW–SWWW, both requiring ‘‘differ-
ent” judgements. Examples of these pairs are given in
Fig. 1.This factor is referred to as Same/Different Judge-
ment. In Experiment 1, the words were either based on
10 tokens with first syllable stress lexical templates (e.g.,
difficulty–difficulty) or were based on 10 tokens with sec-
ond syllable stress lexical templates (e.g., maternity–mater-
nity). This factor is referred to as First/Second stress
template. Combining this factor with the four types of
word pairs created 80 trials, which were fully randomised
and presented in two 40-trial blocks. The experiment
therefore used a 2 � 2 � 2 design (Group � First/Sec-
ond � Same/Different Judgement). The experimental de-
sign is summarised in Fig. 2.

Results

Auditory discrimination and phonological awareness
data were explored by group to check that assumptions
of normality (skew and kurtosis) were met. The SPSS box-
plot function was used to check for outliers, and any data
points lying farther than three interquartile ranges from

Table 3
Acoustic parameters of stressed and unstressed syllables (mean across 40
words).

Stressed Unstressed t(39)

First syllable
manipulated

E.g. MA in
MAternity

E.g. ma in
maTERnity

Median intensity in
dB

73.2 71.2 4.89***

(sd) (5.1) (4.2)
Duration in ms 181.4 148.1 5.58***

(sd) (61.9) (51.9)
Amplitude rise time

in ms
94.3 82.5 3.17**

(sd) (35.3) (33.8)
Mean F0 in Hz 243.5 209.2 9.77***

(sd) (23.3) (15.6)

Second syllable
manipulated

E.g. TER in
maTERnity

E.g. ter in
MAternity

Median intensity in
dB

72.3 70.1 5.03***

(sd) (4.3) (4.6)
Duration in ms 175.3 145.2 5.14***

(sd) (58.9) (50.3)
Amplitude rise time

in ms
95.5 79.2 3.10**

(sd) (43.3) (37.4)
Mean F0 in Hz 241.8 199.3 11.64***

(sd) (22.4) (14.7)

** p < .01.
*** p < .001.
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the further edge of the box were removed. Five outlier
scores were identified and removed for the auditory pro-
cessing tasks (2 control scores for 1 Rise, 2 dyslexic scores
for Frequency, 1 control score for intensity). Group data for
the standardised tasks is provided in Tables 1 and 2. As
would be expected given previous work, the participants
with dyslexia were significantly less sensitive to auditory
rise time and to frequency than their controls, but were
not significantly different for intensity discrimination. Par-
ticipants with dyslexia were significantly impaired in all
the reading measures, and were also significantly impaired
in the phonology measures. These differences were estab-
lished using a series of one-way ANOVAs (N = 40), and F
and p values are reported in Tables 1 and 2.

Mean performance (% correct and reaction time) for
making judgements about shared syllable stress in each
condition, as well as calculated d0 and criterion values are

shown in Table 4. Preliminary analyses confirmed that
reaction times did not differ between groups and response
time is not analysed further. Paired t-tests for d0 and c val-
ues revealed significant group differences on both mea-
sures. Participants with dyslexia showed a significantly
lower sensitivity (d0) than controls (t(1, 38) = 2.7, p = .01)
on the task. They were also more biased toward giving a
‘same’ response than controls (t(38) = �3.2, p = .004). This
indicates that participants with dyslexia had more diffi-
culty detecting acoustic differences between two items
that were stressed differently, sometimes mistaking them
as having the same stress pattern.

In order to check the effects of varying the syllable tem-
plate, a 2 � 2 ANOVA (Group � First/Second syllable stress)
was carried out, taking d0 as the dependent variable. As
would be expected, this showed a significant main effect
of Group, F(1, 38) = 7.3, p = .010. However, the effect of

Fig. 1. Amplitude envelope across frequencies for the word difficulty produced with stress on the first or second syllable.

Lexical template  

(First/Second) 

 Trial type 

(Same/Different) 

Examples 

1 

First syllable 

stress template 

(2000) 

SAME

DIfficulty – DIfficulty 

diFFIculty – diFFIculty

2 
DIFFERENT 

DIfficulty – diFFIculty 

diFFIculty – DIfficulty

3 

Second syllable 

stress template 

(0200) 

SAME

maTERnity – maTERnity 

MAternity – MAternity

4 

DIFFERENT 

maTERnity – MAternity 

MAternity – maTERnity

Fig. 2. Schematic depiction of design of Experiment 1.
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First/Second stress template was not significant, F(1, 38) =
.81, p = .372, and there was no interaction between First/
Second syllable stress and Group, F(1, 38) = 1.2, p = .281.
The results suggest that the participants with dyslexia
found it difficult to judge shared stress when an identical
item was pronounced with two different stress patterns,
whether the stress template was SWWW or WSWW.

In order to examine whether these stress perception
difficulties were related to inefficiencies in auditory per-
ception, multiple regression analyses were used. Three 2-
step fixed order equations were computed, all entering
Group at Step 1 and then either rise time threshold, fre-
quency threshold or intensity threshold at Step 2. The
dependent variable in each case was d0. The results are
shown in Table 5. As can be seen, rise time discrimination
contributed 24% of unique variance to judgements about
syllable stress. Frequency and intensity discrimination
did not contribute significant unique variance to stress
judgements, even though frequency discrimination also
differed significantly between the two groups of partici-
pants. The data suggest a unique relationship between ba-
sic auditory perception of rise time and the accurate
perception of syllable stress in speech.

The results from Experiment 1 are thus very consistent
with the predictions that were made a priori on the basis of
experiments using metrical musical perception tasks and
reiterative speech tasks with participants with dyslexia.
High-functioning adults with dyslexia showed difficulties
in the auditory perception of rise time and difficulties in
perceiving syllable stress. Individual differences in rise
time perception predicted individual differences in stress
perception. However, as the two spoken items to be judged

were identical, the task was rather easy for all the partici-
pants. We therefore repeated the experiment using differ-
ent real word tokens in the same stress perception task.
Using different words increases the cognitive load of the
task, as differences in segmental phonology must be ig-
nored, making it likely that abstract stress templates must
be extracted and compared. Experiment 2 therefore mea-
sures more than stress perception per se, and is conceptu-
ally more similar to the reiterative speech (DeeDee) task in
requiring a more abstract stress-based comparison.

Experiment 2

Participants and tasks were as in Experiment 1, but the
stress judgement task was based on pairs of two different
words.

Syllable stress task

In Experiment 2, the words were 10 pairs of non-iden-
tical tokens created by pairing the 20 items from Experi-
ment 1. Five pairs had first syllable stress templates
(2000, e.g., difficulty–voluntary), and the other five pairs
had second syllable stress templates (0200, e.g., mater-
nity–botanical). This factor is referred to as First/Second.
The pairs again either had the same stress (SWWW–
SWWW or WSWW–WSWW) or different stress (SWWW–
WSWW or WSWW–SWWW). This factor is referred to as
Same/Different Judgement. Word pairs were presented in
both possible orders (e.g. difficulty–voluntary and volun-
tary–difficulty). This resulted in a total of 10 � 2 � 4 = 80
experimental trials. The experiment was again based on a
2 � 2 � 2 design (Group � First/Second � Same/Different
Judgement). Fig. 3 shows a schematic depiction of the de-
sign of Experiment 2, and also provides examples of the
word pairs used. Word pairs were selected to have similar
spoken frequencies. Appendix B provides the full list of
word pairs presented.

As this second syllable stress task was substantially
more difficult for participants, we added filler items con-
taining novel pairings to discourage the use of memory
strategies. These filler items comprised 20 additional easy
‘catch’ trials containing pairs of the same word (e.g. DIffi-
culty–DIfficulty as in Experiment 1), and 20 additional tri-
als containing novel pairings of words with different
lexical stress templates (e.g. DIfficulty–deMOcracy). These

Table 4
Group performance on the stress perception task in Experiment 1: Mean% correct, Mean RT, d0 and c (sd in parentheses).

% Correct RT in ms

Dyslexic Control Dyslexic Control

First syllable stress template (2000)
Same judgement 98 (3.0) 98 (4.1) 1085 (233) 1046 (292)
Different judgement 94.8 (8.7) 99 (2.1) 1069 (224) 1040 (312)

Second syllable stress template (0200)
Same judgement 98.3 (3.4) 98.8 (2.2) 1068 (231) 9882 (286)
Different judgement 92.3 (7.9) 98.5 (2.9) 1044 (207) 1051 (309)
d0 (sensitivity) 4.3 (0.6) 4.7 (0.3)
Criterion (bias) 0.2 (0.3) 0.0 (0.1)

Table 5
Unique variance (R2 change) in the syllable stress task in Experiment 1 (d0)
in 2-step fixed entry regression equations.

Step Beta R2 change

1. Group �.40 .16*

2. Rise time �.56 .24**

2. Frequency �.02 .00
2. Intensity �.25 .06

Beta = standardized Beta coefficient; R2 change = unique variance
accounted for at each step of the 2-step fixed entry multiple regression
equations.

* p < .05.
** p < .01.
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novel pairs were included to reduce the likelihood that
participants would use a strategy of relying on memory
for the exact word pairs that had already been presented,
rather than making judgments based on the actual stress
pattern of the words. These 40 extra trials were not in-
cluded in the analyses. There were thus 120 trials in total
in Experiment 2, fully randomised and presented in 5
blocks of 24 trials each.

Results

Mean performance (% correct and reaction time) in each
condition, and overall d0 and criterion values are shown in
Table 6. As can be seen, control performance on average
was above 80% correct for all conditions, but the partici-

pants with dyslexia performed at a much lower level. Reac-
tion time was again very similar across groups, and no
differences by Group in response times were found in pre-
liminary analyses. Response time is not analysed further.
Paired t-tests for d0 and c values revealed significant group
differences for sensitivity, but not for criterion bias. Partic-
ipants with dyslexia again showed a significantly lower
sensitivity (d0) than controls (t(38) = 5.9, p < .001). How-
ever, there was no significant difference in the response
bias of both groups, indicating that neither group was
more biased toward giving a ‘same’ or ‘different’ response.
The d0 measure from Experiment 1 was highly correlated
with the d0 measure from Experiment 2 (r = 0.56, p < .001).

In order to explore the effects of the experimental
manipulations, a 2 � 2 ANOVA (Group � First/Second

Lexical template  

(First/Second) 

 Trial type 

(Same/Different) 

Examples 

1 

First syllable 

stress template 

(2000) 

SAME

DIfficulty – VOluntary  

diFFIculty – voLUNtary

2 
DIFFERENT 

DIfficulty – voLUNtary 

diFFIculty – VOluntary

3 

Second syllable 

stress template 

(0200) 

SAME

maTERnity – boTAnical 

MAternity – BOtanical

4 

DIFFERENT 

maTERnity – BOtanical 

MAternity – boTAnical

5       Catch trials  

(not included in 

analysis) 

DIfficulty-DIfficulty 

DIfficulty-deMOcracy 

Fig. 3. Schematic depiction of design of Experiment 2.

Table 6
Group performance on the stress perception task in Experiment 2: Mean% correct, Mean RT, d0 and c (sd in parentheses).

% Correct RT in ms

Dyslexic Control Dyslexic Control

First syllable stress template (2000)
Same judgement 64 (13.9) 88 (10.8) 2100 (674) 1783 (669)
Different judgement 59.8 (17.7) 85.3 (18.8) 2303 (765) 1832 (686)

Second syllable stress template (0200)
Same judgement 68.3 (13.3) 86.5 (12.4) 2089 (817) 1787 (665)
Different judgement 51.8 (19.0) 82.3 (19.2) 2311 (794) 1936 (772)
d0 (sensitivity) 1.2 (0.9) 3.2 (1.2)
Criterion (bias) 0.1 (0.3) 0.0 (0.3)
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stress) was again carried out, taking d0 as the dependent
variable. The ANOVA showed a significant main effect of
Group, F(1, 38) = 38.1, p = .000, but no significant main
effect of First/Second stress, F(1, 38) = 2.0, p = .161, and
no significant interaction between First/Second stress �
Group, F(1, 38) = .02, p = .898. Overall, as in Experiment 1,
Experiment 2 found significantly less accurate perfor-
mance by individuals with dyslexia, irrespective of the
stress judgement (SWWW, SWSS) required.

To explore whether individual differences in basic
auditory processing contributed to individual differences
in making judgements about syllable stress when two dif-
ferent words had to be compared, multiple regression
analyses were again used. Three 2-step fixed order equa-
tions were again computed, again entering Group at Step
1 and rise time threshold, frequency threshold or inten-
sity threshold at Step 2. The dependent variable was d0.
The results are shown in Table 7. As can be seen, rise time
discrimination contributes 5% of unique variance to the
accuracy of judgements about syllable stress, a finding
which approached significance (p = .07). Neither fre-
quency discrimination nor intensity discrimination con-
tributed unique variance (0% and 1% respectively). As d0

was significantly related in the two experiments, we also
present analyses for average d0 in Table 7. Average d0 is a
measure of stress sensitivity across the two experiments
combined. As Table 7 shows, rise time was the only sig-
nificant predictor of individual differences in making
judgements about syllable stress, even when Group was
controlled as a factor.

Finally, we were interested in the relationships be-
tween performance in the stress perception tasks (as-
sessed via d0 in Experiments 1 and 2, and the average d0

measure) and performance in the literacy, phonology and
language measures. The full correlation matrix is shown
in Table 8. Table 8 shows that prosodic sensitivity as mea-
sured by the stress perception tasks is significantly related
to individual differences in reading, spelling, phonological

skills and RAN. The correlations suggest that stress pro-
cessing is related to both phonological and literacy perfor-
mance in this sample, although the direction of causation
cannot be assessed. However, it is possible to use logistic
regression to predict each individual’s group membership
(control or dyslexic) on the basis of their performance on
these different measures. Therefore, a backwards stepwise
logistic regression analysis was conducted. The regression
model was initialised with four predictor variables – read-
ing, phonology (Spoonerisms), average d0 across both syl-
lable stress experiments, and rise time threshold. As will
be recalled, the groups differed significantly on all four
of these variables. In the backwards method, predictors
that do not contribute a significant change to the likeli-
hood ratio statistic are removed sequentially until only
significant predictors remain in the model. Table 9 shows
the results from this first set of logistic regressions. Only
two predictors for group membership were retained in
the final model – syllable stress and reading. Of these, syl-
lable stress was the stronger predictor, contributing a lar-
ger change to the likelihood ratio statistic. In contrast,
phonology and auditory perception were not retained in
the model as significant predictors of group membership.
Having identified syllable stress perception and reading
as the strongest predictors for group membership, a sec-
ond stepwise logistic regression was conducted using only
these variables. Syllable stress (average d0) was entered as
the first step since this was the strongest predictor in the
backward model. Reading was entered as the second step.
As shown in Table 10, syllable stress alone correctly pre-
dicted group membership for 80% of participants. Adding
reading to the regression model improved the accuracy
of predictions to 87.5%. Overall, these data suggest that
stress perception is a more persistent discriminator of dys-
lexic difficulties than phonological or auditory measures,
at least when participants are high-performing and well-
compensated dyslexics, as was the case for the current
sample.

Table 8
Raw correlation matrix for Experiment 1 d0 , Experiment 2 d0 and the
average d0 measure.

Experiment 1 d0 Experiment 2 d0 Av. d0

Age .09 .15 .14
NVIQ .18 .33* .31*

VIQ .35* .14 .22
Rise thresh �.62** �.53** �.61***

Frequency thresh �.12 �.30 �.28
Intensity thresh �.30 �.02 �.09
Spoonerisms .11 .57*** .50**

RAN �.35* �.46** �.47**

Reading .39* .53** .54***

Spelling .27 .53** .51**

Digit span .32* .50** .50**

Note: Expt = Experiment; NVIQ = non-verbal IQ (standard score on WASI
Blocks subtest); VIQ = standard score on WASI Vocabulary subtest;
Reading/spelling = reading/spelling standard score on Wide Range
Achievement Test, Spoonerism = No. correct on spoonerisms task,
RAN = naming speed averaged across dense and sparse object RAN, Digit
span = standard score on WASI digit span test.

* p < .05.
** p < .01.

*** p < .001.

Table 7
Unique variance (R2 change) in the syllable stress task in Experiment 2 (d0 ,
see 7A) and in both experiments combined (average d0 , see 7B) explained by
the basic auditory processing measures in 2-step fixed entry regression
equations.

Beta R2 change

7A
1. Group �.69 .48***

2. Rise time �.25 .05a

2. Frequency �.06 .00
2. Intensity .09 .01

7B
1.Group �.68 .46***

2. Rise time �.37 .10**

2. Frequency �.05 .00
2. Intensity .02 .00

Beta = standardized Beta coefficient; R2 change = unique variance
accounted for at each step of the 2-step fixed entry multiple regression
equations.

** p < .01.
*** p < .001.

a p = .07.
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Discussion

We proposed here that very basic auditory processes
may be required to perceive periodic structure in speech,
following the multi-tier framework for understanding spo-
ken language proposed by Greenberg (2006). On the basis
of our prior data with children with dyslexia, we also pro-
posed that individual differences in basic auditory process-
ing of rise time may affect the development of metrical
language processing skills such as the perception of spoken
syllable stress. Given the importance of accurate prosodic
perception for phonological development (Pierrehumbert,
2003), and the well-documented phonological deficits
found in developmental dyslexia, we expected difficulties
in stress perception in adult individuals with dyslexia.
Consistent with this hypothesis, the same-different judge-
ment task designed here to measure stress perception in
adults was indeed found to be performed less accurately
by adults with developmental dyslexia. This difficulty
was consistent across two experiments, whether adults
were making a judgement about an identical lexical item
repeated twice (maternity–maternity), or about two differ-
ent lexical items (maternity–ridiculous). This suggests that

individuals with dyslexia are impaired in the detection of
acoustic prominence in speech.

In addition, correlational analyses demonstrated that
individual differences in the accuracy of stress perception
were associated with individual differences in rise time
discrimination, for both the ‘‘easy” (Experiment 1) and
the ‘‘difficult” (Experiment 2) versions of the stress percep-
tion task, as well as for performance averaged across the
two experiments (average d0). These relationships are con-
sistent with data from previous studies utilising both indi-
rect stress sensitivity paradigms (such as reiterative
speech, Goswami et al., 2009), and a metrical perception
paradigm involving music (Huss et al., 2010). For both reit-
erative speech and metrical structure in music, rise time
discrimination was also found to be a significant predictor
of individual differences in performance accuracy.
Although participants with dyslexia in the current study
showed poorer auditory discrimination of both rise time
and pitch, only individual differences in rise time discrim-
ination predicted stress perception. Rise time may be a
more important acoustic cue to acoustic prominence than
pitch (cf. Greenberg, 2006), as rise time quantifies the
change in sound energy (intensity of the signal) produced

Table 9
Backwards stepwise (likelihood ratio) logistic regression for participant group membership using reading, phonology, syllable stress and rise time threshold as
predictors.

Step Predictors B Exp b Change in �2 log likelihood if variable removed Model R2

(Nagelkerke)
Overall % correct predictions (%)

1. Stress (Av. d0) �2.12* .12 6.56* .68 81.8
Reading �.13 .88 2.28
Rise time .05 1.1 .76
Spoonerisms .10 1.1 .20

2.a Stress (Av. d0) �1.93* .15 6.80** .68 81.8
Reading �.11 .90 2.28
Rise time .06 1.1 1.08

3.b,c Stress (Av. d0) �2.10* .12 9.83** .66 84.8d

Reading �.12* .89 3.44

B = regression coefficient, significance calculated using Wald statistic; exp b = change in odds ratio; Model R2 = total variance accounted for by the model at
each step.

* p < .05.
** p < .01.

a Variable removed on step 2 = spoonerisms.
b Variable removed on step 3 = rise time.
c Model v2(2) = 22.31, p < .001.
d Correct predictions for controls = 81.3%, dyslexics = 88.2%.

Table 10
Stepwise logistic regression for participant group membership using syllable stress and reading as predictors.

Step Predictors B Exp b Model R2 (Nagelkerke) Overall % correct predictions (%)

1. Stress (Av. d0) �2.47** .09 .58 80.0

2a Stress (Av. d0) �2.08* .13 .69 87.5b

Reading �.16* .86

Note: B = regression coefficient, significance calculated using Wald statistic; exp b = change in odds ratio; Model R2 = total variance accounted for by the
model at each step.

a Model v2(2) = 29.22, p < .001.
b Correct predictions for controls = 85.0%, dyslexics = 90.0%.

* p < .05.
** p < .01.
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by speakers as they articulate the onsets of stressed and
unstressed syllables. Intensity discrimination, which was
also related to accuracy in the musical metrical perception
task used with children by Huss et al. (2010), was not a sig-
nificant predictor of stress judgements. This makes sense,
as the musical sequences in Huss et al.’s study all used
the same instrument, and so only intensity and not rise
time varied when notes were accented. In speech, both rise
time and overall intensity will vary when syllables are ac-
cented or stressed.

Performance in the syllable stress task (average d0 mea-
sure) was also a strong predictor of literacy, predicting
group membership with 80% accuracy. This suggests that
subtle speech processing difficulties in developmental dys-
lexia, such as the difficulty with stress perception docu-
mented here, persist into adulthood and can be stronger
markers than the auditory and phonological difficulties
that are markers of dyslexic difficulty in childhood.
Although a priori there may appear to be little reason to
link prosodic sensitivity and written word recognition, sig-
nificant relations between stress perception and reading
have been demonstrated in languages where stress is
marked in the orthography, such as Greek (e.g., Protopapas
& Gerakaki, 2009). Such demonstrations suggest that the
perception of stress patterning in speech (the accurate
detection of alternating strong and weak beats) is impor-
tant for both phonological development and for acquiring
literacy.

Studies are just beginning to demonstrate developmen-
tal relations between stress perception and reading acqui-
sition, both in languages where stress is marked in the
orthography (e.g., Gutiérrez-Palma & Palma-Reyes, 2007,
Spanish) and in languages where it is not (Miller & Schwa-
nenflugel, 2008, English). Even though stress is not marked
by overt codes such as diacritics in English, there may be
subtle orthographic cues to stress (e.g., when a syllable is
written with more letters than necessary, it usually signi-
fies that it is stressed, as in DISCUSS versus DISCUS, see
Kelly, Morris, & Verrekia, 1998). Regarding phonological
development, stress or prosodic patterning has been dem-
onstrated to be an integral part of the phonological repre-
sentations of individual words that are stored in the
mental lexicon during infancy and early childhood (e.g.,
Curtin, Mintz, & Christiansen, 2005; Pierrehumbert, 2003;
Vihman & Croft, 2007). During language acquisition, it ap-
pears critical that infants and children can process effi-
ciently the temporal positions of the syllable ‘‘beats” in
speech and thereby extract prosodic structure. In fact, a re-
cent study with infants showed that statistical learning
alone is a limited means of word segmentation. Johnson
and Tyler (2010) studied infants’ abilities to track transi-
tional probabilities between syllables in an artificial lan-
guage modelled after that used by Thiessen and Saffran
(2003). The infants were aged on average 5.5 and
8 months, and two artificial languages were used, one
based solely on ‘words’ of uniform length (CVCV), and
the other based on ‘words’ that were either CVCV or
CVCVCV. The transitional probabilities to ‘word bound-
aries’ in each language were the same. While even the
5.5-month-olds could segment ‘words’ in the uniform lan-
guage (all CVCV), neither age group succeeded in the lan-

guage with non-uniform word lengths. Johnson and Tyler
(2010) noted that when artificial words are all the same
length, a consistent rhythmic (periodic) cue to word seg-
mentation is provided in addition to the transitional prob-
ability cues that are the focus of study. They suggested that
more attention needed to be given to prosodic cues at the
level of whole utterances in early infant word segmenta-
tion studies.

For individuals who are less sensitive to auditory cues
to stress beats, in particular rise time, there may be re-
duced sensitivity to the rhythmic structure of speech,
and this will have important consequences for developing
the high-quality phonological representations of spoken
words necessary for the acquisition of literacy. If a causal
relationship can be established in future studies, then
rhythmic and/or metrical training would be an important
intervention for children with dyslexia (see Goswami, in
press Huss et al., 2010, for an extended discussion). The
place and role of ‘‘stress beats” (strong and weak syllables)
provides temporal constraints across the different levels
(syllable, word, phrase) that require functional co-ordina-
tion in speech production as well as speech perception
(see Cummins & Port, 1998). Hence interventions address-
ing production as well as perception could be important.
Certainly, there is ample developmental evidence that
metrical structure (strong versus weak syllables) is related
to how children produce words. For example, Gerken
(1994) proposed a metrical template account of children’s
omission of weak syllables when producing multi-syllabic
words. As she pointed out, during language acquisition
young children are far more likely to omit weak syllables
from word-initial positions than word-internal positions.
The weak first syllable of a word like giraffe or banana is
more often omitted than the weak second syllable of a
word like tiger. Utilising a nonword production paradigm
based on 4-syllable words, Gerken reported that while
children omitted more weak syllables (45%) than strong
syllables (11%) overall, their pattern of weak syllable omis-
sions was predicted by the metrical segmentation hypoth-
esis. For SWWS items, the first weak syllable was
preserved 59% of the time, compared to 39% for the second
weak syllable. However, for WSWS items, the first weak
syllable was preserved 41% of the time, compared to 79%
of the time for the second weak syllable. Gerken argued
that young learners of English rely on metrical production
templates. Infants learn rapidly from perceiving English
words that they tend to begin with strong syllables, and
young children apply this metrical learning to their own
word productions. Our data could mean that metrical pro-
duction templates would be weaker in children with devel-
opmental dyslexia.

The data presented support the view that the acoustic
parameter of rise time is central to the perception of sylla-
ble stress in speech. As noted by Greenberg (2006), rise
time is also important for perceiving intonational grouping
because of its links with prosody. This has interesting
implications for the notion that languages can be grouped
into different rhythm classes, such as stress- versus sylla-
ble-timed, on the basis of different formulae quantifying
consonantal and vocalic variability (e.g., Arvaniti, 2009;
Grabe & Low, 2002; Ramus, Nespor, & Mehler, 1999). These
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formulae typically depend on durational acoustic differ-
ences, but the criteria used to place languages on a rhyth-
mic continuum do not reflect durational variation per se,
rather they depend on the extent to which a language
has easily-defined prominences or accents (see Dauer,
1983, 1987; and extended discussion in Arvaniti, 2009).
As rise time is the critical cue to prominence or stress ac-
cent in speech (Greenberg, 1999, 2006; Greenberg, Carvey,
Hitchcock, & Chang, 2003), analyses based on rise time
may help to describe stress patterning in languages that
have been classically difficult to place on rhythmic con-
tinua, such as Greek, Italian and Spanish. As Arvaniti
(2009) argues, rhythm does not equate to timing, as metri-
cal structure must also be taken into consideration. She de-
fines metrical structure as the alternation of strong and
weak elements. By her account, the key acoustic factors
contributing to rhythm perception in different languages
are grouping and relative prominence, and durational var-
iability plays only a small role in the creation of rhythm.
Consistent with Arvaniti’s linguistic argument, Huss et al.
(2010) did not find that children’s duration thresholds
were predictive of their performance in the musical metri-
cal task.

In their work on speech production, Cummins and Port
(1998) defined rhythm in speech as the hierarchical organi-
sation of temporally co-ordinated prosodic units. They
noted that Liberman (1975) originally proposed that
speech, music and dance all conformed to the ‘‘metrical
organisation hypothesis”, that all temporally-ordered hu-
man behaviour is metrically organised. The centrality of
prosodic perception (alternating strong and weak beats)
to temporally-ordered language behaviours is supported
here by the strong associations found between stress per-
ception, phonology and literacy. If human utterances are
structured so that stress beats lie at privileged phases of a
higher-level prosodic unit, for example marking word on-
sets or phrase-level information (Cummins & Port, 1998;
Greenberg, 2006), then periodicity is a key organisational
principle underlying phonological and intonational struc-
ture in human speech. Accordingly, an insensitivity to the
auditory parameters (such as rise time) that are critical
for the perception of metrical structure would be expected
to affect the development of both language and literacy in
children, across languages from putatively different rhythm
classes (Goswami, Wang, et al., 2010). The current study
provides some evidence consistent with this hypothesis.
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Appendix A

Word. lists

List 1 List 2

First syllable stress First syllable stress
DIFFICULTY SECONDARY
VOLUNTARY MILITARY
COMFORTABLE AUDITORY
ORGANIZER CITIZENSHIP
DELICACY LAVATORY
MONASTERY FERTILIZER
CAULIFLOWER DANDELION
CATERPILLAR MERCENARY
EDUCATOR PUNISHABLE
CATEGORIZE PACIFIER

Second syllable stress Second syllable stress
DEMOCRACY CAPACITY
VELOCITY RIDICULOUS
HISTORICAL REMARKABLE
CURRICULUM DISCOVERY
MAGNIFICENT FACILITY
DELIVERY NECESSITY
MATERNITY PARTICIPANT
BOTANICAL MANIPULATE
DEBATABLE MIRACULOUS
HARMONICA PISTACHIO

Appendix B

Word. pairs in Experiment 2

List 1 List 2

First syllable stress First syllable stress
DIFFICULTY–VOLUNTARY SECONDARY–MILITARY
COMFORTABLE–

ORGANIZER
AUDITORY–CITIZENSHIP

DELICACY–MONASTERY LAVATORY–FERTILIZER
CAULIFLOWER–

CATERPILLAR
DANDELION–
MERCENARY

EDUCATOR–CATEGORIZE PUNISHABLE–PACIFIER

Second syllable stress Second syllable stress
DEMOCRACY–VELOCITY CAPACITY–RIDICULOUS
HISTORICAL–

CURRICULUM
REMARKABLE–
DISCOVERY

MAGNIFICENT–DELIVERY FACILITY–NECESSITY
MATERNITY–BOTANICAL PARTICIPANT–

MANIPULATE
DEBATABLE–HARMONICA MIRACULOUS–

PISTACHIO
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Modulation Filterbank Parameters 

 

The wideband envelope was extracted from the speech signal by taking the absolute value of 

the Hilbert transform. The envelope was then passed through the MFB to derive the AM 

hierarchy. The MFB had the following edge frequencies (in Hz) : 50; BEAT*5; BEAT*1.75; 

BEAT/1.75; BEAT/5; 0.5 , where 'BEAT' refers to the syllable beat rate computed for that 

sample. Factors of 1.75 and 5 were used to take into account filter roll-off. Table A shows the 

resulting edge frequencies for a BEAT rate of 4.04 Hz (as used in the tone vocoding 

experiment). 

Table A. Edge frequencies for MFB 

 AM Tier (filter 

channel) 

MFB Bandpass 

Edges (Hz) 

Q-6 value 

1 Fast 20 - 50 1.2 

2 Sub-beat  7 - 20 1.0 

3 Syllable  2.3 - 7 1.0 

4 Stress  0.8 - 2.3 1.0 

5 Slow 0.5 - 0.8 2.2 

 

 

 The modulation filterbank comprised a series of adjacent FIR bandpass filters. Each 

filter had a response of –6 dB at the cross-over edge with its adjacent filter, but –55dB  at the 

cross-over with the next-but-one channel. Response at channel edges was similar across all 

channels on a logarithmic frequency scale, for both the low-pass and high-pass edges. The 

time delay introduced by each filter was removed by a suitable time-alignment of the filter 

output. The MFB is a scaled version of a filterbank originally used for separating wideband 

speech into audio frequency channels. Here we scaled the channel edge frequencies to be 

suitable for the modulation frequency ranges of interest. For further technical details of the 

filterbank design, see Stone & Moore (2003). In determining the spacing of channels in the 

MFB, consideration was also taken for the filter Q values (centre frequency divided by 

bandwidth). The Q values of auditory modulation filters are typically assumed to lie between 

1–2  (Dau et al., 1997a, b; Ewert and Dau, 2000; Lorenzi et al., 2001; Ewert et al., 2002; Sek 

and Moore, 2002). The Q values calculated from our MFB (whose bandwidths and centre 

frequencies were chosen on theoretical grounds) are shown in Table A. With the exception of 
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the very slowest channel (whose lower edge was artificially limited by the length of our 

stimuli), the Q values for each channel are consistently close to 1. This value is consistent 

with Sek & Moore (2003), who found that their human psychophysical data fitted with a 

modulation filterbank with a Q value of 1 or slightly less. 

 



  Appendix 3.1 

Page 1 of 2 
 

a. Probabilistic Amplitude Demodulation (PAD) Demodulation Cascade 

 In this method, the timescale of demodulation can be controlled so that only very fast 

or very slow modulations are extracted from the signal via a process of Bayesian inference. 

Hence, the AM hierarchy is derived by applying the PAD method recursively at progressively 

slower and slower timescales (see Figure a).  

Figure a. Illustration of the PAD demodulation cascade 

 

 In the first stage, PAD is set to demodulate the original speech signal at the fastest 

timescale, extracting a fast-varying envelope (e1) and its complementary fine structure (f1, 

derived by dividing the original signal by the envelope). PAD is then adjusted to a slower 

time scale and re-applied to the fast-varying envelope (e1), extracting a more slowly-varying 

envelope (e2) and complementary fine structure (f2). This fine structure contains the remnant 

fast modulations that are not extracted by the second round of demodulation, and forms the 

fast AM tier. PAD is then applied at an even slower time scale to e2, extracting a third 

envelope (e3) and fine structure (f3). Accordingly, f3 becomes the Sub-beat tier and e3 is 

demodulated for the fourth time. This process is continued until the final round of 

demodulation where the final envelope becomes the slow tier, and final fine structure 

becomes the stress tier. Since the frequency content of the PAD envelopes is related to the 

timescale of demodulation in a nonlinear fashion, the parameters of demodulation were 
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calibrated by hand to ensure that the resulting PAD AM hierarchy provided the best possible 

match to the MFB hierarchy.  

 

b. Comparison of MFB and PAD AMs 

 As shown in Figure b, the two sets of AMs were similar in shape. However, all PAD-

derived AMs contained a low background level of modulation that was slower than the target 

rate. This was an inherent property of the PAD algorithm in which the timescale of 

demodulation limited only the upper tail of the modulation spectrum. Also, PAD achieved 

less distinct modulation frequency separation, as shown by the spectrum of the 'Stress' tier, 

which also contained faster modulation at the 'Syllable' rate. Despite these differences, our 

experimental data indicated that participants did not differ in performance regardless of 

whether they were hearing PAD- or MFB-derived AM tiers. Moreover, participants 

frequently noted that they found PAD-derived stimuli more "natural" sounding, indicating 

that the presence of background slow modulation and the less abrupt frequency roll-off may 

be an inherent property of natural sounds. 

Figure b. Left : MFB (bold) and PAD (dotted) AM tiers. Right : Respective modulation 

spectra for MFB (bold) and PAD (dotted) AMs.  
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List of 44 Nursery Rhymes 

Nursery Rhyme Music Time Signature Rhythmic Meter 

Baa Baa Black Sheep 2/4 Duple 

Once I Caught a Fish Alive 4/4 Duple 

One Two Buckle my Shoe 4/4 Duple 

Old MacDonald Had a Farm 4/4 Duple 

Twinkle Twinkle Little Star 4/4 Duple 

London Bridge is Falling Down 4/4 Duple 

Mary Had a Little Lamb 4/4 Duple 

Polly Put the Kettle On 2/4 Duple 

Yankee Doodle 2/4 Duple 

Peter Peter Pumpkin Eater 4/4 Duple 

Mary Mary Quite Contrary 4/4 Duple 

Simple Simon Met a Pieman 4/4 Duple 

As I Was Going to St Ives 2/4 Duple 

The Queen of Hearts N.A. Duple 

Lucy Lockett 4/4 Duple 

Cobbler Cobbler Mend My Shoe 4/4 Duple 

Peter Piper N.A. Duple 

I'm a Little Teapot 4/4 Duple 

Sing a Song of Sixpence 2/4 Duple 

Wee Willie Winkie 2/4 Duple 

Old King Cole 4/4 Duple 

The Wheels on the Bus 4/4 Duple 

Three Little Monkeys N.A. Duple 

Grand Old Duke of York 4/4 Duple 

Incy Wincy Spider 6/8 Duple 

Jack and Jill 6/8 Duple 

Humpty Dumpty 6/8 Duple 

Ring-a-Ring-a-Roses 6/8 Duple 
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Row Row Row Your Boat 6/8 Duple 

Hickory Dickory Dock 6/8 Duple 

Here We Go Round the Mulberry Bush 6/8 Duple 

   

Little Miss Muffet 6/8 Triple 

Little Jack Horner 6/8 Triple 

Little Boy Blue 6/8 Triple 

Curly Locks 6/8 Triple 

To Market  6/8 Triple 

Pussycat Pussycat 6/8 Triple 

Ladybird Ladybird 6/8 Triple 

There Was An Old Lady 6/8 Triple 

Two Cats of Kilkenny N.A Triple 

Ride a Cock Horse 3/4 Triple 

Orange and Lemons 3/4 Triple 

Rock-a-Bye-Baby 3/4 Triple 

Lavender's Blue 3/4 Triple 

 

Note that some nursery rhymes with an assigned with a 'Duple' or 'Triple' meter actually had 

a compound musical time signature, such as 6/8. Compound time signatures consist 

combinations of duple or triple beats within each bar, for example 6/8 indicates 2 sets of 

triple beats. Therefore, these rhymes can be uttered to fit a duple meter as well a triple meter, 

depending on the rate of speaking. In these cases, the decision as to whether a rhyme was 

'duple'- or 'triple'-meter was made on the basis of poetic scansion, using the dominant 

prosodic foot length.  

From inspection of the table, 31 out of the 44 (70%) nursery rhymes were assigned a duple 

meter, while 13 (30%) were assigned a triple meter. The fact that all the nursery rhymes had 

relatively short prosodic feet (2 or 3 syllables in length) is consistent with Gueron's (1974) 

analysis of the metrical structure of 130 Mother Goose nursery rhymes. She concluded that 

all but one of the nursery rhymes had a simple 'Strong (S) - weak (w)' alternating metrical 

pattern of : (w) S w S (w) S w S (w), with the weak elements in parenthesis omitted in some 
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rhymes. In Gueron’s analysis, 'S' elements were usually realized by a single stressed syllable 

while 'w' elements were realised by between one to three unstressed syllables. Consequently, 

the prosodic feet in Gueron's analysis had a maximum length of 4. While the relative 

frequencies of each type of prosodic foot were not given in the study, the current set of 

nursery rhyme material indicates a higher incidence of nursery rhymes with shorter (e.g. 2-

syllable-long) prosodic feet.  
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ERBN-spaced Spectral Filterbank 

 The spectral filterbank comprised a series of adjacent FIR band-pass filters, reflecting 

the equivalent rectangular bandwidth (ERB) of cochlea channels in a normal hearing 

individual. The first channel in the filterbank was low-pass rather than band-pass. Each filter 

channel had a response of –6 dB at the cross-over edge with its adjacent filter, but –55dB  at 

the cross-over with the next-but-one channel. Response at channel edges was similar across 

all channels on a logarithmic frequency scale, for both the low-pass and high-pass edges. The 

time delay introduced by each filter was removed by a suitable time-alignment of the filter 

output. For further technical details of the filterbank design, see Stone & Moore (2003). The 

figure below shows the frequency response curves for the 29 channels in the spectral 

filterbank, where the spectral frequency (x-axis) is on a logarithmic scale. The table below 

lists the cross-over edges (-6 dB) between the adjacent filter channels. 

 

Edge Number Edge (Hz) 

1 (low-pass) 100 

2 137 

3 179 

4 225 

5 277 

6 334 

7 398 

Spectral Frequency (Hz) 
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u
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el

 

(d
B

) 
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8 470 

9 549 

10 638 

11 736 

12 846 

13 969 

14 1105 

15 1257 

16 1426 

17 1614 

18 1824 

19 2057 

20 2317 

21 2607 

22 2930 

23 3289 

24 3689 

25 4135 

26 4631 

27 5184 

28 5800 

29 6486 

30 7250 
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24-Channel Modulation Filterbank 

 The 24-channel modulation filterbank also comprised a series of adjacent FIR band-

pass filters, and had the same overall design as the spectral filterbank, but with appropriately-

scaled and log-spaced channel edge frequencies. The first channel in the filterbank was a 

dummy low-pass channel rather than band-pass, and the output from this channel was 

discarded (leaving 24 channels from 0.9-40 Hz). As was the case for the spectral filterbank, 

each modulation channel had a response of –6 dB at the cross-over edge with its adjacent 

filter, but –55dB at the cross-over with the next-but-one channel. The time delay introduced 

by each filter was removed by a suitable time-alignment of the filter output. The figure below 

shows the frequency response curves for the 24 channels in the modulation filterbank, where 

the modulation frequency (x-axis) is on a logarithmic scale. The table below lists the cross-

over edges (-6 dB) between the adjacent filter channels. 

 

 

Edge Number Edge (Hz) 

1 (low-pass dummy channel, 

output discarded) 

0.79 

2 0.93 

3 1.09 

4 1.27 

5 1.49 

6 1.74 

Modulation Frequency (Hz) 

O
u

tp
u

t 
L

ev
el

 

(d
B

) 
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7 2.03 

8 2.38 

9 2.78 

10 3.25 

11 3.80 

12 4.45 

13 5.20 

14 6.08 

15 7.11 

16 8.32 

17 9.72 

18 11.38 

19 13.30 

20 15.56 

21 18.20 

22 21.28 

23 24.89 

24 29.11 

25 34.04 

26 39.81 
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Spectral RMS Power and Spectral Correlation Patterns 

RMS Power. 

The RMS (root-mean-square) spectral power of the 29 cochlear channels was computed. 

Since the actual RMS power varied across samples and speakers, for each sample, the 

average power across all spectral channels was subtracted from each channel, leaving only 

the difference from the average. This difference was then averaged over samples and 

speakers. Figure a shows the computed difference RMS power by spectral channel, averaged 

over all 44 nursery rhymes and 6 speakers. As shown in the figure, RMS power is strongest 

for low spectral frequencies around 200 Hz, and steadily declines as frequency increases.  

Figure a. RMS power across 29 ERBN-spaced cochlear channels 

 

 As expected from the classical acoustic phonetics and engineering literatures, the long 

term power spectrum has a low-frequency maximum with gradual fall towards high 

frequencies and Figure a confirms this for the present material. Power is generally stronger at 

lower spectral frequencies, and decreases approximately logarithmically (since the y-axis unit 

is dB) with increasing spectral frequency, thereby obeying a 1/f law. The drop off in power 

below ~200-300 Hz corresponds to the approximate lower end of the fundamental frequency 

for female speakers.  
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Spectral Correlation. 

 Next, the cross-(spectral)-channel correlation was computed for the 29 cochlear 

channels. Before this could be done, a thresholding procedure was employed to remove 

extraneous low-level modulations in the envelope arising from background noise. Such noise 

would reduce the true correlation between spectral channels. For each spectral channel, the 

long-term RMS power was determined. Using a threshold of -16dB from the long-term RMS 

power of each spectral channel, all portions of the envelope with power above this value were 

left unchanged. All time periods of the signal with power below RMS -16dB were set to 

RMS -16dB (henceforth referred to as the 'floor') plus a very small amount (amplitude of 1
-10

) 

of random noise. This small amount of noise was added to portions that did not meet the 

threshold level so that floored sections of the envelope would not be completely flat, as this 

could artificially elevate correlations between spectral channels in subsequent analyses. This 

flooring procedure is described in greater detail in Stone & Moore (2007). Figure b shows an 

example of the original (black) and floored (red, dashed) envelopes for two adjacent spectral 

(cochlear) channels. Since the human discrimination of intensity and the subjective sensation 

of loudness varies approximately logarithmically with signal power (Fechner, 1860), the base 

10 logarithm of the floored envelope in each band was taken, and this logarithmic envelope 

was used for the subsequent correlation analysis.  

Figure b. Example of floored envelopes in adjacent spectral channels  

 

 For the correlation analysis, only the unfloored sections of each cochlear channel (i.e. 

active sections) were correlated with the temporally-corresponding sections of all the other 

cochlear channels. To do this, floored sections were excised from the target channel, and the 

remaining unfloored sections were concatenated. This concatenated envelope was then z-

scored, and correlated with temporally-corresponding z-scored sections of every other 

channel (ie irrespective of whether those were floored or unfloored). Thus the temporally-
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corresponding sections in other channels could contain floored (silenced) sections as well as 

unfloored (active) sections, although the target channel itself only contained unfloored 

(active) sections.  

 Figure c shows the result of this cross-correlation across cochlear channels (with zero 

lag), where the mean correlation coefficient over 44 speech samples and 6 speakers is plotted. 

Visual inspection of the figure shows that mid-frequency spectral channels around 1000 Hz 

(green-cyan) show the strongest correlation with each other in this general region, and with 

other spectral channels as well. There is also some evidence of channel 'clustering' for 

example among green-cyan (~1000 Hz) channels, or among blue (~3000 Hz) channels.  

Figure c. Intercorrelations between spectral channels. In the top plot, each coloured line 

indicates a single cochlear channel.  

 

Spectral Correlations by Spectral Band 

 5 spectral bands were identified in Chapter 4 on the basis of the rectified component 

loading pattern of the top 5 principle components. The top panel of Figure d shows the mean 

correlation of the cochlear channels in each spectral band (shown as coloured lines) with the 

channels in other spectral bands. The black dotted line shows the grand mean correlation over 

all cochlear channels. Note the similarity in pattern between this grand mean correlation, and 

the loading pattern of principle component 1 in Chapter 4, Section 4.3.2. The bottom panel of 

Figure d shows the RMS power across the 29 cochlear channels, with the boundaries of the 

spectral bands superimposed as vertical dotted lines. It is interesting to note that there is an 
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approximately inverse relationship between RMS power and correlation strength. So Spectral 

Band 4, which has lowest power, shows strong correlations with adjacent channels (has the 

highest mean). In contrast, Spectral bands 1 & 2 have high power, but only correlate weakly 

with other channels. Hence, the RMS power in an audio frequency region is not necessarily a 

good indicator of its correlation strength with other channels. 

Figure d. (top) Mean spectral correlations between each spectral band and the other spectral 

bands. Each band is shown in a different colour. The black dotted line indicates the grand 

mean correlation over all spectral bands. The vertical dotted line shows the boundary 

between spectral bands. (bottom). RMS power of each cochlear channel, with spectral band 

boundaries overlaid as vertical dotted lines. 
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Spectral PCA Component Loadings by Speaker 

 

 The lines of 

different thickness 

indicate different PCA 

components. More 

important (lower 

numbered) components 

are shown in a thicker 

line. The loading 

patterns for the top 5 

PCA components shown 

here are broadly similar 

across the 6 speakers. 

The total amount of 

variance explained by 

the top 5 components 

was also similar across 

speakers, ranging from 

62.1% to 68.0%. 
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Rate Normalisation of Modulator Channels 

 

 To remove the effects of the rate disparity between modulation channels, a rate 

normalisation procedure was developed. This involves taking the unwrapped angular phase of 

each channel, and normalising its rate of angular change over time with respect to a standard 

reference channel (i.e. central channel 13 out of 25), as shown in Figure a.  Note that when a 

different reference channel is chosen (eg. channel 20), the result of the subsequent PCA 

analysis is highly similar. The rate-normalised angular phase for each channel is then 

multiplied back with the original power of that channel. The result of the procedure is that 

rate differences between channels are removed, but power and relative phase differences are 

retained, as shown in Figure b. This should increase the overall degree of correlation between 

modulation channels without losing critical differences in temporal patterning. 

 

Figure a. Example of the unwrapped phase angle for original (black)  and rate-normalised 

(red) modulators increasing as a function of time  
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Figure b. Example of original (black) and rate-normalised (red) modulators for each 

channel. 

 

 When the PCA procedure was then performed on these rate-normalised modulators, 

the first 5 components explained on average over 80% of variance (compared to ~30% for the 

whole modulator), indicating that the top few extracted components provided a representative 

view of the data. Note that these results are highly similar to those obtained using the power 

of each channel only. 
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RMS Power of the Modulation Spectrum for Each Spectral Band 

 The RMS difference power across the modulation spectrum was computed rather than 

the raw RMS power. This was determined by subtracting the RMS power over all 24 

modulation channels from the RMS of each modulation channel. This process was repeated 

for each Spectral Band. The power differences were then averaged across the 44 nursery 

rhyme samples and 6 speakers, and these averages are shown in Figure a. For all 5 Spectral 

bands, there is a clear peak in modulation power between 2-6 Hz. This is consistent with the 

data of Greenberg et al (2003) on modulation spectrum power (based on the 1-2 kHz band in 

speech).  

Figure a. RMS modulation power across modulation rate for each spectral band. 

 

 However, there is a slight trend for the peak in modulation rate power to be higher for 

spectral bands of higher frequency, as was also observed by Plomp (1983b). For example, 

while the peak in power for Spectral Band 1 (100-300 Hz, red) occurs around 3 Hz, the peak 

in power for Spectral Band 5 (3900-7250 Hz, magenta) is between 4-5 Hz.  Also the 5 

Spectral Bands show opposite trends at the slowest and fastest modulation rates. At the 

slowest modulation rates (~ 1 Hz), low frequency Spectral Bands (i.e. 1 & 2) have the highest 

power while high frequency Spectral bands (i.e. 4 & 5) have the lowest power. At the fastest 

modulation rates (~40 Hz), this trend is reversed as now high frequency Spectral Bands show 

the highest power and low frequency Spectral bands show the lowest power. This trend can 
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be interpreted to mean that slow changes in speech energy (e.g. prosodic stress) tend to be 

represented more strongly at low spectral frequencies while fast changes in speech energy 

(e.g. noise bursts following the release of stop consonants) are more strongly represented at 

high spectral frequencies.  
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List of Nursery Rhyme Sentences Used to Develop Prosodic Indices & Evaluate Models 

(Each sentence is 24 syllables long) 

 

Duple Meter 

1. Old MacDonald had a farm, E-I-E-I-O. And on that farm he had some cows, E-I-E-I 

 ... 

2. Mary had a little lamb its fleece was white as snow. And everywhere that Mary went 

 the lamb was ... 

3. Polly put the kettle on, Polly put the kettle on, Polly put the kettle on, we'll all have ... 

4. Yankee Doodle came to London riding on a pony. He stuck a feather in his hat and 

 called ... 

5. Peter Peter pumpkin eater had a wife and couldn't keep her. Put her in a pumpkin shell 

 and ... 

6. Mary Mary quite contrary, how does your garden grow? With silver bells and cockle 

 shells and pre ... 

7. Simple Simon met a pieman going to the fair. Says Simple Simon to the pieman, "let 

 me ... 

8. Lucy Lockett lost her pocket, Kitty fisher found it. Not a penny was there in it, only ... 

9. Cobbler Cobbler mend my shoe, get it done by half past two. Half past two is much 

 too late, get it done ... 

10. Peter Piper picked a peck of pickled peppers. A peck of pickled peppers Peter Piper 

 picked .... 
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Triple Meter 

1. Little Miss Muffet sat on a tuffet eating her curds and whey. There came a big spider 

 who sat ... 

2. Little Jack Horner sat in a corner eating his Christmas pie. He stuck in his thumb and 

 pulled out ... 

3. Little Boy Blue come blow your horn, the sheep's in the meadow the cow's in the 

 corn. Where is the boy who ... 

4. Curly locks, curly locks will you be mine? You shall not wash dishes nor feed the 

 swine, but sit on a... 

5. To market to market to buy a fat pig. Home again home again dancing a jig. To 

 market ... 

6. Pussycat pussycat where have you been? I've been up to London to visit the Queen. 

 Pussycat ... 

7. Ladybird ladybird fly away home, your house is on fire and your children are gone. 

 All except ... 

8. There was an old Lady who swallowed a spider, that wriggled and wiggled and 

 tickled inside her ... 

9. There once were two cats of Kilkenny. Each thought there was one cat too many. So 

 they fought and they fit ... 

10. Lavender's blue, dilly dilly, lavender's green. When I am king, dilly dilly, you shall be 

 queen ... 

 



Nursery Rhyme Duration and Rate of Speaking Appendix 7.1

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Baa Baa Black Sheep 2 76 23.2 3.3 22.6 3.4 20.1 3.8 21.1 3.6

Once I Caught a Fish Alive 2 106 30.2 3.5 34.1 3.1 31.5 3.4 39.2 2.7

One Two Buckle my Shoe 1 69 22.0 3.1 28.0 2.5 23.5 2.9 25.5 2.7

Old MacDonald 2 118 30.3 3.9 36.8 3.2 31.2 3.8 36.2 3.3

Twinkle Twinkle Little Star 2 84 22.8 3.7 31.8 2.6 21.2 4.0 27.3 3.1

London Bridge 1 72 20.9 3.4 27.7 2.6 19.4 3.7 24.5 2.9

Mary Had a Little Lamb 1 111 26.6 4.2 35.5 3.1 26.7 4.2 29.9 3.7

Polly Put the Kettle On 2 102 25.7 4.0 33.9 3.0 21.7 4.7 26.1 3.9

Yankee Doodle 3 87 19.5 4.5 24.3 3.6 17.7 4.9 20.6 4.2

Peter Peter Pumpkin Eater 3 93 21.9 4.2 28.5 3.3 21.1 4.4 21.5 4.3

Mary Mary Quite Contrary 3 90 25.5 3.5 30.5 3.0 24.8 3.6 24.3 3.7

Simple Simon 2 116 29.7 3.9 34.3 3.4 27.8 4.2 30.7 3.8

St Ives 2 96 30.3 3.2 33.4 2.9 26.6 3.6 29.2 3.3

The Queen of Hearts 1 56 15.2 3.7 16.8 3.3 15.3 3.7 15.9 3.5

Lucy Lockett 3 84 21.7 3.9 24.1 3.5 19.8 4.2 20.5 4.1

Cobbler Cobbler 3 84 28.3 3.0 32.3 2.6 24.0 3.5 25.7 3.3

Peter Piper 2 100 25.4 3.9 25.6 3.9 23.4 4.3 22.9 4.4

I'm a Little Teapot 3 96 31.7 3.0 39.5 2.4 27.2 3.5 34.7 2.8

Sing a Song of Sixpence 1 97 24.5 4.0 26.6 3.6 23.3 4.2 25.9 3.7

Wee Willie Winkie 2 84 23.1 3.6 24.8 3.4 22.0 3.8 25.1 3.3

Old King Cole 1 74 16.7 4.4 19.6 3.8 17.3 4.3 19.9 3.7

The Wheels on the Bus 1 54 14.7 3.7 19.8 2.7 17.4 3.1 18.8 2.9

Three Little Monkeys 1 111 27.5 4.0 34.0 3.3 26.8 4.1 33.2 3.3

Grand Old Duke of York 1 62 13.9 4.5 16.7 3.7 14.2 4.4 17.5 3.5

Incy Wincy Spider 2 92 23.2 4.0 30.6 3.0 25.0 3.7 31.8 2.9

Jack and Jill 3 84 21.3 3.9 24.5 3.4 22.1 3.8 25.2 3.3

Humpty Dumpty 3 108 26.6 4.1 30.9 3.5 25.3 4.3 27.1 4.0

Ring-a-Ring-a-Roses 3 69 18.6 3.7 22.6 3.1 16.8 4.1 23.6 2.9

Row Row Row Your Boat 1 81 20.8 3.9 23.1 3.5 19.7 4.1 24.1 3.4

Hickory Dickory Dock 3 84 23.5 3.6 23.2 3.6 20.4 4.1 26.6 3.2

Little Boy Blue 2 106 28.3 3.7 32.1 3.3 27.8 3.8 29.2 3.6

Mulberry Bush 1 92 23.9 3.8 26.9 3.4 21.7 4.2 26.2 3.5

Ride a Cock Horse 2 82 20.8 3.9 23.0 3.6 19.6 4.2 20.4 4.0

To Market 2 126 35.6 3.5 38.3 3.3 30.4 4.1 30.6 4.1

Two Cats of Kilkenny 2 102 27.7 3.7 25.9 3.9 27.1 3.8 26.4 3.9

Pussycat Pussycat 2 84 23.3 3.6 23.1 3.6 20.1 4.2 22.1 3.8

Ladybird Ladybird 2 78 19.5 4.0 22.1 3.5 20.0 3.9 21.6 3.6

There Was An Old Lady 1 72 16.9 4.3 19.5 3.7 16.3 4.4 17.0 4.2

Orange and Lemons 1 88 23.4 3.8 26.1 3.4 20.5 4.3 27.7 3.2

Curly Locks 2 84 22.7 3.7 24.5 3.4 20.9 4.0 22.2 3.8

Rock-a-Bye-Baby 2 74 20.9 3.5 27.0 2.7 19.1 3.9 27.5 2.7

Lavender's Blue 1 72 19.0 3.8 22.3 3.2 16.8 4.3 25.2 2.9

Means 23.5 3.8 27.3 3.3 22.2 4.0 25.5 3.5

Grand Mean Rate of Speaking (syll/s) 3.6 3.2

(SE) 0.32 0.11

ADS CDS page 1 of 3
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Repetiti

ons

Speaker 1 Speaker 2

Total 
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Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Baa Baa Black Sheep 21.6 3.5 24.0 3.2 33.8 2.2 27.7 2.7

Once I Caught a Fish Alive 34.8 3.0 34.9 3.0 60.1 1.8 43.9 2.4

One Two Buckle my Shoe 26.1 2.6 27.3 2.5 43.6 1.6 31.3 2.2

Old MacDonald 36.7 3.2 34.7 3.4 59.4 2.0 52.2 2.3

Twinkle Twinkle Little Star 26.9 3.1 28.4 3.0 37.6 2.2 37.1 2.3

London Bridge 25.1 2.9 21.7 3.3 35.2 2.0 31.1 2.3

Mary Had a Little Lamb 32.9 3.4 30.5 3.6 41.1 2.7 46.0 2.4

Polly Put the Kettle On 30.5 3.3 24.7 4.1 32.5 3.1 38.0 2.7

Yankee Doodle 24.0 3.6 23.2 3.8 25.7 3.4 27.1 3.2

Peter Peter Pumpkin Eater 28.1 3.3 27.2 3.4 35.9 2.6 28.1 3.3

Mary Mary Quite Contrary 30.0 3.0 28.2 3.2 36.0 2.5 34.3 2.6

Simple Simon 36.1 3.2 31.2 3.7 48.9 2.4 39.7 2.9

St Ives 34.6 2.8 30.8 3.1 46.8 2.1 37.1 2.6

The Queen of Hearts 17.8 3.1 18.4 3.0 27.2 2.1 21.0 2.7

Lucy Lockett 27.8 3.0 24.0 3.5 35.0 2.4 27.0 3.1

Cobbler Cobbler 32.7 2.6 27.0 3.1 39.0 2.2 36.1 2.3

Peter Piper 31.1 3.2 25.6 3.9 38.5 2.6 24.4 4.1

I'm a Little Teapot 23.1 2.8 24.8 2.6 40.0 2.4 42.3 2.3

Sing a Song of Sixpence 29.4 3.3 24.8 3.9 37.6 2.6 30.8 3.1

Wee Willie Winkie 27.8 3.0 22.9 3.7 34.7 2.4 27.9 3.0

Old King Cole 22.3 3.3 18.2 4.1 26.8 2.8 24.4 3.0

The Wheels on the Bus 21.5 2.5 20.2 2.7 21.7 2.5 24.3 2.2

Three Little Monkeys 34.2 3.2 31.1 3.6 36.9 3.0 39.5 2.8

Grand Old Duke of York 18.0 3.4 16.3 3.8 25.9 2.4 18.9 3.3

Incy Wincy Spider 31.1 3.0 31.7 2.9 30.2 3.0 36.2 2.5

Jack and Jill 31.8 2.6 26.9 3.1 31.0 2.7 28.0 3.0

Humpty Dumpty 38.2 2.8 29.1 3.7 40.6 2.7 36.0 3.0

Ring-a-Ring-a-Roses 25.1 2.7 22.1 3.1 28.6 2.4 24.8 2.8

Row Row Row Your Boat 28.7 2.8 23.8 3.4 35.5 2.3 30.3 2.7

Hickory Dickory Dock 31.0 2.7 24.4 3.4 36.2 2.3 32.6 2.6

Little Boy Blue 37.7 2.8 30.0 3.5 39.7 2.7 36.6 2.9

Mulberry Bush 29.5 3.1 23.2 4.0 35.5 2.6 27.7 3.3

Ride a Cock Horse 24.7 3.3 22.1 3.7 33.0 2.5 25.8 3.2

To Market 47.1 2.7 35.1 3.6 67.3 1.9 35.7 3.5

Two Cats of Kilkenny 34.5 3.0 29.3 3.5 48.0 2.1 39.0 2.6

Pussycat Pussycat 30.2 2.8 22.0 3.8 35.4 2.4 25.9 3.2

Ladybird Ladybird 25.1 3.1 20.6 3.8 28.9 2.7 26.0 3.0

There Was An Old Lady 21.5 3.3 18.1 4.0 22.1 3.3 26.4 2.7

Orange and Lemons 31.3 2.8 21.6 4.1 32.2 2.7 30.4 2.9

Curly Locks 29.2 2.9 22.5 3.7 39.0 2.2 28.7 2.9

Rock-a-Bye-Baby 27.3 2.7 24.4 3.0 29.5 2.5 28.8 2.6

Lavender's Blue 25.8 2.8 18.3 3.9 24.1 3.0 24.2 3.0

29.1 3.0 25.4 3.5 36.6 2.5 31.7 2.8
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Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Length

(s)

Rate 

(syll/s)

Baa Baa Black Sheep 17.1 4.4 27.2 2.8 20.5 3.7 27.6 2.8

Once I Caught a Fish Alive 27.9 3.8 43.4 2.4 28.3 3.7 40.0 2.7

One Two Buckle my Shoe 20.7 3.3 29.9 2.2 19.6 3.5 25.7 2.7

Old MacDonald 26.5 4.5 32.5 3.6 33.3 3.5 36.1 3.3

Twinkle Twinkle Little Star 26.2 3.2 41.6 2.0 22.1 3.8 35.5 2.4

London Bridge 16.4 4.4 24.3 2.7 20.3 3.5 27.4 2.6

Mary Had a Little Lamb 26.6 4.2 32.7 3.4 27.6 4.0 35.6 3.1

Polly Put the Kettle On 18.9 5.4 24.1 4.2 24.1 4.2 28.1 3.6

Yankee Doodle 16.1 5.4 23.2 3.8 18.2 4.8 27.3 3.2

Peter Peter Pumpkin Eater 20.4 4.6 31.8 2.9 23.0 4.0 34.0 2.6

Mary Mary Quite Contrary 22.8 3.9 37.5 2.4 15.4 3.9 23.5 2.6

Simple Simon 25.7 4.5 40.4 2.9 27.6 4.2 36.9 3.1

St Ives 20.6 4.7 32.6 2.9 27.3 3.5 36.0 2.7

The Queen of Hearts 13.4 4.2 19.2 2.9 12.9 4.3 20.8 2.7

Lucy Lockett 17.1 4.9 21.7 3.9 23.1 3.6 27.4 3.1

Cobbler Cobbler 19.4 4.3 28.9 2.9 24.8 3.4 32.3 2.6

Peter Piper 17.8 5.6 27.0 3.7 29.2 3.4 32.6 3.1

I'm a Little Teapot 20.8 4.6 36.6 2.6 32.0 3.0 37.6 2.6

Sing a Song of Sixpence 21.8 4.4 26.4 3.7 24.0 4.0 30.7 3.2

Wee Willie Winkie 17.0 4.9 23.7 3.5 22.5 3.7 23.9 3.5

Old King Cole 12.7 5.8 18.2 4.0 17.7 4.2 22.4 3.3

The Wheels on the Bus 12.4 4.4 20.5 2.6 17.0 3.2 19.5 2.8

Three Little Monkeys 24.1 4.6 43.3 2.6 25.4 4.4 32.6 3.4

Grand Old Duke of York 11.5 5.4 17.1 3.6 14.9 4.2 17.1 3.6

Incy Wincy Spider 19.7 4.7 38.7 2.4 26.9 3.4 38.0 2.4

Jack and Jill 18.1 4.6 30.2 2.8 24.2 3.5 26.4 3.2

Humpty Dumpty 19.4 5.6 29.9 3.3 26.8 4.0 32.6 3.3

Ring-a-Ring-a-Roses 13.3 5.2 19.7 3.5 16.3 4.2 18.2 3.5

Row Row Row Your Boat 17.2 4.7 21.5 3.8 22.3 3.6 30.5 2.7

Hickory Dickory Dock 17.3 4.9 29.8 2.8 24.9 3.4 29.6 2.8

Little Boy Blue 24.0 4.4 44.4 2.4 27.5 3.9 34.4 3.1

Mulberry Bush 16.4 5.6 26.6 3.5 22.3 4.1 28.1 3.3

Ride a Cock Horse 17.0 4.8 23.2 3.5 20.8 3.9 24.5 3.3

To Market 23.8 5.3 31.0 4.1 35.3 3.6 35.9 3.5

Two Cats of Kilkenny 20.6 5.0 28.2 3.6 30.4 3.4 32.0 3.2

Pussycat Pussycat 16.6 5.1 30.8 2.7 23.7 3.5 24.6 3.4

Ladybird Ladybird 16.8 4.6 27.6 2.8 19.1 4.1 23.5 3.3

There Was An Old Lady 13.5 5.3 26.3 2.7 16.6 4.3 19.8 3.6

Orange and Lemons 17.2 5.1 33.3 2.6 22.5 3.9 25.7 3.4

Curly Locks 19.9 4.2 32.8 2.6 22.2 3.8 28.4 3.0

Rock-a-Bye-Baby 19.2 3.9 32.9 2.2 20.2 3.7 27.1 2.7

Lavender's Blue 16.1 4.5 23.5 3.1 19.1 3.8 22.8 3.2

19.0 4.7 29.4 3.1 23.1 3.8 28.9 3.0
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The Conditional Entropy Measure 

 

a. Definitions of Entropy, Conditional Probability and Conditional Entropy 

 Entropy is a measure of the uncertainty of a random variable. If X is a discrete 

random variable, and p(x) is its probability mass function for all possible values of X,  then 

its entropy, H(X), can be calculated as : 

H(X) = -∑ p(x) log p(x) (Eq. 1) 

 

When the logarithm taken is to the base 2, then the unit for entropy is in 'bits'. As an example, 

one can use this formula to compute the entropy of a fair coin toss, where the probability of 

heads and tails are both equal at 0.5. In this case,  

 

   H(coin toss)  = - (0.5 x log2(0.5) + 0.5 x log2(0.5)) 

      = 1 bit 

 

Therefore, one can infer that there is 1 'bit' of information associated with the event of the 

coin toss.  

 When there are 2 random variables, X & Y, we can calculate the conditional 

probability of one event occurring, given that we already know the outcome of the other 

event. For example, let's say we roll two six-sided dice, and X represents the outcome of the 

first dice, and Y represents the outcome of the second dice. Now imagine that we see that the 

first dice has landed on '1' (i.e. X = 1), but the second dice has rolled away under the table 

and we cannot see its result. What is the probability that both dice landed on '1', given that we 

already know that the first dice landed on '1'? This question can be re-stated in terms of 

conditional probability as P(Y=1\X=1) or the probability that Y = 1 given that X = 1. In this 

case, the answer is 1/6, rather than 1/36, which would have been the probability that both die 

landed on '1' and we did not already know the result of the first die.  

 In a similar way, we can compute the conditional entropy of one event, conditional 

upon another event. This conditional entropy, H(Y\X) is given as : 

H(Y\X) = -∑ p(x) ∑ p(y/x) log p(y/x)  (Eq. 2) 

 

where p(x) is the probability distribution of the random variable X, and p(y/x) is the 

conditional probability distribution of Y, given X. 
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b. Conditional Entropy of the Peak-Phase Distribution 

 We can now apply the concept of conditional entropy to the AM hierarchy. Let's say  

'peaks' in the Syllable AM represent syllable vowel nuclei, and we would like to track the 

likelihood of occurrence of these vowel nuclei over a brief period of time (e.g. 50 ms). For 

example, in one 50 ms window, we may see a Syllable peak, but in another 50  ms window 

we wouldn't. On average, let's say we see a Syllable peak every 5 such windows or so. 

Therefore, the probability of there being a Syllable peak in one randomly-selected 50 ms time 

window is 1/5 (20%). Conversely, the probability of not observing a peak in that time 

window is 4/5 (80%). Therefore, according to Equation 1, the entropy associated with 

Syllable peak occurrence is : 

   H(peaks)  = - (0.2 x log2(0.2) + 0.8 x log2(0.8)) 

     = 0.72 bits 

This entropy value expresses how uncertain we are, if we had to make a guess (predict) 

whether we would observe a Syllable peak in a new 50 ms time window. 

 Now let's say we want to improve the certainty of our guess about the occurrence of 

Syllable peaks by making use of other information that is related to the occurrence of 

Syllable peaks. For example, we might know that Syllable peaks tend to occur most often at 

specific Stress AM phase regions. Therefore, if we knew the concurrent Stress AM phase 

during the 50 ms window, this could tell us whether we were likely to see more Syllable 

peaks or less Syllable peaks during that period. Of course, the extent to which knowing Stress 

AM phase reduces our uncertainty depends on how strongly related Stress AM phase is to the 

occurrence of Syllable peaks in the first place. If there was only a weak relationship between 

these two variables, then knowing Stress AM phase might not help us very much. On the 

other hand, if there was a very strong conditional relationship between the two variables (i.e. 

Syllable peaks only ever occur at one Stress AM phase value), then knowing the Stress AM 

phase would be very helpful in reducing our uncertainty about Syllable peak occurrence. 

 One way of quantifying the strength of the relationship between the two variables 

(Syllable peaks and Stress phase) is to compute the conditional entropy of one event given 

the other, or H(peak/phase). If the conditional entropy (uncertainty) is very low, then the two 

variables can be said to have a strong relationship. If the conditional entropy is high, then the 

two variables are only weakly related. This relationship can be visualised by looking at the 



  Appendix 7.2 

Page 3 of 7 

 

conditional distribution of Syllable peaks given Stress phase, and the conditional entropy 

value is also computed using this conditional distribution (see Equation 2). Let us now 

consider the types of conditional peak-phase distributions that could be observed and their 

implications.  

 

i. Rectangular peak-phase distribution  

 Under a flat or rectangular peak-phase distribution (see Figure a and Table a), 

Syllable peaks occur at every Stress phase value with an equal probability. Therefore, 

knowing the current Stress phase would not change our guess about Syllable peaks in any 

way. To illustrate this in concrete terms, let's say we randomly sample 15 separate 50 ms time 

windows from the Syllable modulator. Since Syllable peaks have a base probability of 20% 

(from the previous page), we can expect 3 out of the 15 windows to contain a Syllable peak, 

while the other 12 windows would not contain a Syllable peak. If the Syllable peak-Stress 

phase joint distribution  is perfectly flat, this would suggest that the 3 Syllable peaks all 

occurred at different Stress phases, with no preference toward a specific phase value. 

Therefore, for ease of illustration, let's divide Stress phase into 3 equal phase bins, and say 

that 1 Syllable peak occurred in each Phase bin. These frequencies are captured in Table a 

below, which therefore shows the joint probability distribution of Syllable peaks for every 

Stress phase. In the table, 1 out of the 15 observations contained a Syllable peak that occurred 

during -pi to -pi/3 Stress phase, another 1 observation contained a Syllable peak that occurred 

during -pi/3 to pi/3 Stress phase, and a final 1 observation contained a Syllable peak that 

occurred during pi/3 to pi Stress phase. The remaining 12 observations that did not contain a 

Syllable peak were equally divided among the 3 phase bins (i.e. 4 observations per bin).  

Notice that the marginal probability of peak or no peak occurrence (the far right column) is 

the sum of all the individual peak occurrences at each phase value. Notice also that for all 3 

Stress phase values (columns), the conditional probability of peak occurrence, P(peak\phase), 

is exactly the same. Based on this joint probability distribution table, the conditional entropy 

of Syllable peaks given Stress phase can be calculated, which works out to be 0.72 bits.  

Notice that this entropy value is exactly the same as the entropy value for peak occurrence 

when we did not take into account Stress phase. Therefore, when the peak-phase distribution 

is perfectly flat, knowing the Stress phase beforehand does not help us to make a better guess 

about whether the time window contains a Syllable peak or not. Similarly, this indicates that 
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the two variables (Stress phase and Syllable peaks) are unrelated, since Stress phase does not 

exert any constraints on Syllable peak occurrence.   

 

Figure and Table a. Rectangular Peak-Phase Distribution 

 

 

 

Stress phase -pi to -pi/3 -pi/3 to  pi/3 pi/3 to pi  Marginal Probability 

(peak or no peak) 

Peak 1/15 1/15 1/15 1/15 + 1/15 + 1/15   

= 3/15  (20%) 

No peak 4/15 4/15 4/15 4/15 + 4/15 + 4/15   

= 12/15  (80%) 

P(peak\phase) (1/15) / (5/15)  

= 20% 

(1/15) / (5/15)  

=20% 

(1/15) / (5/15)  

=20% 

 

 

 

ii. Unimodal peak-phase distribution  

 Now, let us consider the other extreme case of a perfectly narrow, unimodal peak-

phase distribution, such as that in Figure b. In this case, Syllable peaks only ever occur at one 

Stress phase value. Therefore, if we were to divide the same 3 Syllable peak observations 

according to the Stress phase bin, all 3 of them would have occurred in the second phase bin, 

and none would have occurred in the first or third phase bins (see Table b). Accordingly, if 

we assume that the same total number of observations (5) occurred at each phase value, 

irrespective of whether they contained a peak or not, this would result in the frequency 

distribution shown in Table b. Notice that while the marginal probability of peak occurrence 

(far right column) is the same as in the previous case, the conditional probabilities (bottom 

row) are now not the same across the 3 phase values. The conditional entropy of this 

unimodal peak-phase distribution can then be computed (assuming log(0) = 0), and works out 

to be just 0.32 bits, which is lower than the entropy of the original entropy of the Syllable 
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peak distribution (0.72 bits) as well as that of the flat peak-phase distribution. This lowered 

conditional entropy value indicates a stronger relationship between Stress phase and Syllable 

peaks, where phase is exerting a constraint on the occurrence of Syllable peaks. Also, in this 

case, knowing about Stress phase beforehand is very helpful in predicting whether or not a 

random time window contains a syllable peak, because if the Stress phase is between -pi/3 to 

pi/3, seeing a Syllable peak is quite likely, but if the Stress phase is outside of this range, then 

we can be sure that no Syllable peaks would occur. Therefore, the shape of the peak-phase 

distribution provides a very strong indication as to the relatedness of the two variables. In 

general, the sharper (more kurtotic) the distribution, the lower the conditional entropy, and 

the more related the two variables are. 

 

Figure b and Table b. Unimodal Peak-Phase Distribution 

 

 

 

 

Phase value -pi to -pi/3 -pi/3 to  pi/3 pi/3 to pi  Marginal Probability 

(peak or no peak) 

Peak 0/15 3/15 0/15 0/15 + 3/15 + 0/15   

= 3/15  (20%) 

No peak 5/15 2/15 5/15 5/15 + 2/15 + 5/15   

= 12/15  (80%) 

P(peak\phase) (0/15) / (5/15)   

= 0% 

(3/15) / (5/15)  

= 60% 

(0/15) / (5/15)  

= 0% 
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c. Parameters for Computing Conditional Entropy in the CDS-ADS Study  

 In the experimental study with child- and adult-directed speech, the conditional 

entropy measure was used as an index for the strength of the relationship between Stress 

phase and Syllable peak occurrence, as well as Syllable phase and Phoneme peak occurrence. 

Here, instead of 3 phase bins, 17 equally-spaced phase bins were used, and conditional 

entropy was computed as per Equation 2. The number of phase bins affects the maximum 

entropy of a variable. For example, if just 2 phase bins were used, the maximum entropy 

would be 1 bit. For 17 phase bins, the maximum entropy increases to 4.1 bits because there 

are more possible outcomes. Also, the entropy estimated using a limited or finite sample set 

(such as the speech sentences used in the experimental study) is always an underestimation of 

the true entropy of the variable (Treves & Panzeri, 1995). Although methods have been 

developed to estimate and correct for this bias, entropy estimation is still considered 

problematic by some (Paninski, 2003). Therefore, in this study, it is acknowledged  that the 

entropy values computed are flawed estimates of the 'true' entropy values, and only 

differences in entropy observed between the experimental conditions are considered 

meaningful (not the absolute entropy values themselves). Furthermore, the conditional 

entropy index is merely used as a measure for quantifying differences in the shape peak-

phase distribution (which is the true variable of interest). Therefore, the claims made from the 

study pertain to the hierarchical peak-phase distribution, rather than to the entropy of speech 

per se. 

  An alternative to computing conditional entropy is to compute 'mutual information', 

or (I(X;Y). The two measures are mathematically-related where the mutual information 

between two variables is the absolute entropy of one variable minus the conditional entropy 

between the variables : 

    I(X;Y) = H(X) - H(X\Y)          (Eq. 3) 

For the examples described in this Appendix, the mutual information between Stress phase 

and Syllable peaks for the rectangular distribution would be 0.72 - 0.72 = 0 bits, and for the 

unimodal distribution would be 0.72 - 0.32 = 0.4 bits. Therefore mutual information is high 

when conditional entropy is low, and the two measures are strongly related to each other.  

 Finally, in the examples described in this Appendix, the time window for Syllable 

peak observation was (for ease of illustration) set at 50 ms. In the CDS-ADS study, the time 
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window corresponded to 1 sample at the sampling rate of 1050 Hz, which was a window 

length of 1.05 ms. 
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Confidential         May 2011 
 

 

Information Sheet 

 

Speech Rhythm Perception in Dyslexia 
 

Dear participant, 

 

Thank you for your interest in this study on speech rhythm perception in dyslexia. The 

purpose of this study is to understand how rhythmic patterns in speech are processed 

differently by people with and without developmental dyslexia. 

 

There will be two parts to the experimental session. In the first part, you will be asked to 

complete a series of short tests for memory, vocabulary and reading. In the second part, you 

will do several computer-based experiments on rhythm perception. For example, you may be 

asked to tap along to the rhythm of a song or rhyme, or to match rhythmic patterns with 

nursery rhymes.  

 

In total, the whole study should take 2.5 hours and you will be paid an honorarium of £20 for 

your participation. 

 

 

Confidentiality/Ethical Approval 

 

All data will be identified by a code, with names kept in a locked file. Results are normally 

presented in terms of groups of individuals and will be presented at conferences and written 

up in journals.  If any individual data were to be presented, the data would be totally 

anonymous, without any means of identifying the individuals involved. This project has 

received ethical approval from the Cambridge Psychology Research Ethics Committee 

(University of Cambridge). 

 
 

If you would like further information on any of the above, please do not hesitate to contact 

Victoria Leong at vvec2@cam.ac.uk . 

 

Yours sincerely, 

 

 

Victoria Leong   

PhD Candidate 

 

 

 

mailto:vvec2@cam.ac.uk
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CONSENT FORM 

 

 

Speech Rhythms in Nursery Rhymes 
 

 

Victoria Leong and Prof. Usha Goswami,  

Department of Experimental Psychology, University of Cambridge, Downing Street, 

Cambridge CB2 3EB 

Tel. 01223 333550       Email:vvec2@cam.ac.uk 

 

 

 
 

Have you read the information sheet about the study? YES/NO 

Have you received sufficient information about the study? YES/NO 

Do you understand that you are free to withdraw from the study at 

any time and without giving a reason for withdrawing? 

YES/NO 

Do you agree to take part in this study? YES/NO 

 

 

Name in block letters ___________________________________________________ 

 

Signed  _______________________________         Date  ______________________ 

 

Contact telephone number  _________________________________________ 

            

  or     Email _________________________________________ 
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GENERAL INFORMATION 

1 Name  

2 Sex M    /    F 

3 Date of Birth ____ / ____ / 19___ 

4 Handedness Right   /   Left   /   Ambidextrous 

READING DEVELOPMENT 

5 Do you have reading/spelling problems? Yes   /   No 

5b If yes, do you have a formal diagnosis of dyslexia? Yes   /   No 

5c At what age did you receive your diagnosis? ______ yrs 

6 Do you have any visual impairments? 
Yes   /   No 

If yes : ___________________ 

7 Do you have any hearing impairments? 
Yes   /   No 

If yes : ___________________ 

8 Do you have any neurological disorders? 
Yes   /   No 

If yes : ___________________ 

9 
Do you have (or had as a child) language 

impairments?  

Yes   /   No 

If yes : ___________________ 

10 
Do you have a diagnosis of any other learning or 

developmental difficulties? 

Yes   /   No 

If yes : ___________________ 

11 Are you a native speaker of English? Yes   /   No 

11b If yes, which country and region are you from? __________ ,  ____________ 

FURTHER INFORMATION 

12 
Would you like to receive information on the 

findings of the present research study? 

Yes   /   No 

Email : ____________________ 

13 
May we contact you about participating in our 

future studies? 
Yes   /   No 

PARTICIPANT BACKGROUND INFORMATION SHEET 
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Peak-Phase Distributions for Each Nursery Rhyme 

(a) Distribution of Syllable tier peaks with respect to Stress phase for each nursery rhyme 

sentence. 

 

(b) Distribution of Phoneme tier peaks with respect to Syllable phase for each nursery rhyme 

sentence.

 

 


	Rise time perception and detection of syllable stress in adults with developmental dyslexia
	Introduction
	Experiment 1
	Method
	Participants
	Tasks
	Standardised ability tests
	Phonological awareness measures
	Psychoacoustic tasks
	Syllable stress task


	Results

	Experiment 2
	Syllable stress task

	Results
	Discussion

	Acknowledgments
	Appendix A
	lists

	Appendix B
	pairs in Experiment 2

	References




